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Abstract 
This study uses the hybrid finite-difference method (HFDM), which combines the finite-difference and 
spectral approaches, to describe the Magnetohydrodynamic (MHD) turbulence decay. By using a 
finite-difference approach in conjunction with a cyclic Penta-diagonal matrix, the numerical algorithm 
of the hybrid method solves the Navier-Stokes equations and the magnetic field equation with the 
fourth order's precision in space and second order in time. The spectral approach is used to solve the 
pressure Poisson equation. The time-dependent turbulence features of this flow were in excellent 
agreement with the appropriate analytical solution, which is valid for short timeframes, for the classical 
issue of the 3-D Taylor and Green vortex flow without taking the magnetic field into account. We also 
show how the effective numerical approach may be utilised to model the decline of 
magnetohydrodynamic turbulence at various magnetic Reynolds numbers. 
 
Keywords: Spectral approach, hybrid finite difference method, Taylor-Green vortex issue, 
magnetohydrodynamics, and turbulence decay 

 

1. Introduction 

The simulation of cascade processes of turbulent energy transmission, where large- and 
small-scale vorticity and different turbulence laws intimately interact with each other, is of 
special interest in studying turbulent flows. Cascade processes determine the internal 
structure of flows and the method of turbulent dissipation. The study and description of 
cascade turbulence models received much attention (Kolmogorov, 1941) [25], (Taylor and 
Green, 1931). Cascade models have mostly been employed to research isotropic turbulence, 
although they are not without other uses. Building cascade models is crucial for researching 
the characteristics of magnetohydrodynamic (MHD) turbulence, one of the most complicated 
turbulent flows. 
The first person to bring up the issue of the impact of magnetic fields on turbulent flows was 
Batchelor (Batchelor, 2021) [2], who offered fundamental equations and an analytical 
solution for the flow of an electrically conducting fluid. Schumann (1976) [19] conducted the 
first numerical analysis of the first kind of magnetohydrodynamic turbulence issue with the 
magnetic number Rem = 1. The hypothesis of (Moffatt, 1967) [26], who investigated a 
homogeneous isotropic ow affected by an applied external magnetic field, was reflected in 
the numerical experiment of Schumann. The spectral method is employed in the Modelling 
described in the works of these scientists, and it serves as the foundation for the presentation 
of a quantitative description of magnetic damping, the emergence of anisotropy, and the 
dependence of the results on the presence or absence of a non-linear summand in the Navier-
Stokes equation. The limited capabilities of computing devices at the time prevented a 
complete solution to this issue. A comparable issue was later investigated by (Hossain, 2021) 
[9] and (Zikanov and Thess, 1998) [24]. Direct numerical Modelling of large-scale structures in 
a periodic magnetic field was used to get these authors' results. These results showed a 
change in the statistical turbulence characteristics due to the magnetic field's effect. These 
scientists' contribution in this field is assessed by demonstrating the significant differences in 
the behaviour of two- and three-dimensional structures. (Vorobev et al., 2005) [22] examined 
locally isotropic structures using the approach of big eddies and came to a similar 
conclusion. (Burattini et al., 2010) [7], (Knaepen et al., 2004) [14], and (Knaepen et al., 2004) 

[14] investigated the process of the magnetic field's influence on developed turbulence. 
(Knaepen et al., 2004) [14]. 
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Demonstrated the possibility of using the quasi-stationary approximation for the solution of the second type of problem and 

suggested using quasi-linear approximations to solve the problem at Rem = 20. This work aims to investigate weakly induced 

MHD turbulence flows caused by a homogenous external magnetic field using the current finite-difference and spectral 

approaches. 

The 3-D Taylor and Green vortex flow classic issue is considered for algorithm validation, and it was shown that this flow's 

simulated time-dependent turbulence characteristics are in great agreement with the corresponding analytical solution valid for 

short times. In order to characterise the development of three-dimensional turbulence over time (particularly, energy cascade 

and viscous dissipation), Taylor and Green (1931) developed the classic issue. The resultant flow is now known as the Taylor-

Green flow. The fundamental process of turbulent flow inspired their research, the decay of three-dimensional turbulent flow 

created in a wind tunnel, which was caused by the grinding down of eddies owing to the nonlinearity of the Navier-Stokes 

equations. They used analysis to calculate the kinetic energy and its rate of dissipation. 

Only briefly is Taylor and Green's initial analytical research thorough. Brachet et al. (2021) [6] used two approaches to address 

the Taylor-Green vortex issue to understand better the 3D Taylor-Green vortex flow: numerical solution using the spectral 

technique and power-series analysis. The resulting average kinetic energy and energy spectra were displayed and contrasted at 

various flow Reynolds numbers. Three-dimensional Navier-Stokes equations were later numerically integrated with the 

periodic Taylor-Green starting condition (Brachet et al., 2021) [6]. The slope of the energy spectrum was compared with 

Kolmogorov's 5/3 slope in the inertial subrange in this direct numerical simulation investigation. Additionally, utilising large-

eddy simulation and different grid resolutions, the compressible Navier-Stokes equations were also applied to the Taylor-

Green vortex issue (DeBonis, 2013) [8], and the temporal evolutions of the kinetic energy and its dissipation rate were 

compared. 

 

2. Materials and Methods 

To estimate the MHD turbulence decay, it is important to numerically model the change in all physical parameters over time at 

various magnetic Reynolds numbers. This research focuses on the simultaneous investigation of magnetic field self-excitation 

and conducting fluid motion under the influence of external forces. The goal is to define beginning conditions for the velocity 

and magnetic fields in the phase space that meet the continuity requirement (Zhakebayev, 2014) [23]. A Fourier transform 

converts a given starting condition's phase space into physical space. The obtained velocity and magnetic fields are utilised as 

the filtered MHD equations' beginning conditions. The unstable three-dimensional magnetohydrodynamics equation is also 

solved to mimic the decay of MHD turbulence. The large eddy simulation method-based numerical Modelling of MHD 

turbulence degradation dependent on the conductive characteristics of the incompressible fluid is examined. In order to 

simulate the issue numerically, non-dimensional non-stationary filtered magnetic hydrodynamics equations and the continuity 

equation are solved in the Cartesian coordinate system. 
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Where u¯i (i = 1, 2, 3) are the velocity components, H¯1, H¯2, and H¯3 are the magnetic field strength components, A = 

H2/(4πρV 2) = Π/Re2
m is the Alfv'en number, H is the characteristic value of the magnetic field strength, V is the typical 

velocity, Π = (VAL/νm)2 is a dimensionless value (on which the value Π depends in the equation for H¯i). If Π << 1, then 

∂H¯i/∂t = 0. The publication (Ievlev, 1975) discussed the physics of phenomena related to the ability to disregard the summand 

∂H¯i/∂t. (VA)2 = H2/4πρ is the Alfv'en velocity, p¯ = p + H¯2A/2 is the full pressure, t is the time, Re = LV /ν is the Reynolds 

number, Rem = V L/νm is the magnetic Reynolds number, L is the typical length, ν is the kinematic viscosity coefficient, νm is 
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the magnetic viscosity coefficient, ρ is the density of electrically conducting incompressible fluid, and τij
u, τij

H is the subgrid-

scale tensors responsible for small-scale structures to be modelled. 

To model a subgrid-scale tensor, a viscosity model is presented as , where 

 

is the turbulent viscosity, S¯ij = (∂u¯i/∂xj + ∂u¯j/∂xi)/2 is the defor- 

mation velocity tensor value. To model a magnetic subgrid-scale tensor, a viscosity model is used: τij
H = −2ηtJ¯ij, 

where  is the turbulent magnetic diffusion, the coefficients CS and DS are calculated for each defined 

time layer, and J¯ij = (∂H¯i/∂Xj −∂H¯j/∂xi)/2 is the magnetic rotation tensor reviewed by (Zhakebayev, 2014) [23]. 

Periodic boundary conditions are selected at all borders of the reviewed area of the velocity components and the magnetic field 

strength. 

The initial values for each velocity component and strength are defined in the form of a function that depends on the wave 

numbers in the phase space: 
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Where u¯i is the one-dimensional velocity spectrum, i = 1 refers to the longitudinal spectrum, i = 2, and i = 3 refer to the 

transverse spectrum, H¯i is the one-dimensional magnetic field strength spectrum, m is the spectrum power, and k1, k2, k3 are 

the wave numbers. 

For this problem, we selected a variational parameter b and the wave number kmax, which determine the type of turbulence. In 

figure 1, the parameter b varies when kmax = 10. For Modelling, homogeneous MHD turbulence can be set parameters kmax and 

b, which correspond to the experimental data [20]. 

 

 
 

Fig 1: The equation of initial level turbulence, depending on the fixed wave number and the variational parameter b: 1) b = 2; 2) b = 4; 3) b 

= 6; 4) b = 8. 

 

2.1 Numerical method

To solve the problem of homogeneous incompressible MHD turbulence, a scheme of splitting by physical parameters is used: 

1. (⃗u∗ − ⃗un)/∆t = −(⃗un∇)⃗u∗ + A (H⃗ n∇)H⃗ n + (1/Re)(∆⃗u∗) − ∇τu, 

2. ∆p = ∇⃗u∗/∆t,  

3. (⃗un+1 − ⃗u∗)/∆t = −∇p. 
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During the first stage," the Navier-Stokes equation is solved without the pressure consideration. For motion is solved without 

taking pressure into account. For an approximation of the convective and diffusion terms of the intermediate velocity field, a 

finite-difference method in combination with a cyclic Penta-diagonal matrix is used (Batista, 2018) [4], (Navon, 1987) [18], 

which allows for an increase in the order of accuracy in space. The intermediate velocity field is solved using the Adams 

Bashforth scheme combined with a five-point sweep method. The numerical algorithm for solving incompressible MHD 

turbulence without considering large eddy simulation is considered (Abdibekova et al., 2018). Let’s consider the velocity 

component u1 in the horizontal direction at the spatial location (i + 1/2,j,k): 
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When using the explicit Adams-Bachfort scheme for convective terms and the implicit Crank-Nicholson scheme for viscous 

terms, equation (2) takes the form:  

where 
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The discretisation of convective terms looks as [12]:  
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The discretisation of diffusion terms looks as: 
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The discretisation of magnetic field terms looks as:  
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The viscosity model and the subgrid-scale tensor are, respectively, 
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The discretisation of the strength tensor terms looks as: 
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Then the left-hand side of equation (3) is denoted by
1

2
i jk

q


 

1

1
1 1 1 1,

,2
2 2

n
n

i j k
i jk i j k

q U U



 

    (4) 

 

We find 
1

1
1

2

n

i jk
U




 from equation (4) 

 
1

1
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,2
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n
n
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 
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Replacing all 
1

1
1 ,

2

n

i j k
U




the equations (3), we obtain 
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We can re-write equation (5) as 
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Where 
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Assuming that equation (6) has the second-order accuracy in time, we may solve the following equation instead: 
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     (7)  

 

We can show that equation (7) is an O(∆t4) approximation to equation (6) (Kim and Moin, 1985). Equation (7) is a 

factorisation approximation to equation (6), which allows each spatial direction to be treated sequentially. If we denote the 

solution to equation (7) 
1

2
i jk

q


by expanding equation (7), subtracting equation (6) from it, and noting that 
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Therefore, equation (7) is an order O (∆t4) approximation to equation (6) rather than an order O (∆t3) approximation as stated 

in (Kim and Moin, 1985) without proof. Since the difference between 
1

2
i jk

q


 and 

1

2
i jk

q


 is of higher order, we shall return to 

the same notation and just use 
1

2
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q


 To determine
1

2
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q


, equation (7) is solved in 3 stages in sequence as follows: 
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.  (10) 
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In the first stage, 
1
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2

i j k
A
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it is sought in the coordinate direction x1 
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S

t
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
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
. 

 

This equation (12) is solved by the cyclic Penta-diagonal matrix, which yields. 
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The same procedure is repeated for the x2 directions in the second stage. Namely, 
1

,
2

i jk
B



it is obtained by solving equation (9), 

with the solution from the first stage as the coefficient on the right hand and the coefficient s1 in the Penta-diagonal matrix 

replaced by 
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Finally, the third stage
1

,
2

i jk
q



 is solved through the similar Penta-diagonal the system is shown in equation (10). 

Once we have determined the value
1
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The velocity components
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



1
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, , ,

2

n

i j k k
U




 are solved similarly. 

 

2.3 Algorithm for solving the Poisson equation 

The pressure Poisson equation is solved in the subsequent phase, ensuring that the continuity equation is satisfied. A Fourier 

transform converts the Poisson equation from physical space to spectral space. The continuity equation is not satisfied by the 

resultant intermediate velocity field. The term corresponding to the pressure gradient is added to the intermediate field to 

produce the final velocity field: 
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Substituting the continuity equation, we obtain the Poisson equation for the pressure field: 
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, 

 

Where Fi,j,k denotes the known right-hand side of the Poisson equation, each term is approximated by an order O(∆x4) finite-

difference approximation. For example, the first term in Fi,j,k is approximated as 
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To be consistent with the spatial accuracy in the first step, the left-hand side of the above Poisson equation is discretised using 

the 5-point scheme of O(∆x4) accuracy, as follows: 
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Now we apply the three-dimensional Fourier transform. 
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The inverse transforms are: 
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Substituting equation (15) into equation (14), we obtain the solution for the pressure field quickly in the spectral space as 
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The pressure Pi, j, and k in the physical space are then calculated using an inverse Fourier transform. The final velocity field is 

then calculated using the acquired pressure field in the third stage. When the final velocity field is computed, the third step 

assumes that the transfer is exclusively accomplished through the pressure gradient. (⃗un+1 − ⃗u∗)/∆t = −∇p). 

 

2.4 An algorithm for resolving the magnetic field strength equation 

Reviewing equation (1) for the first component of the horizontal magnetic field intensity at the geographical location (i + 1/2, 

j, k): (17) 
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. 

 

Equation (17) results from finding the magnetic field strength using the explicit Adams-Bachfort method for magnetic 

convective terms and the implicit Crank-Nicholson strategy for viscous terms. 
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The discretisation of magnetic convective terms looks as: 
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The discretisation of magnetic diffusion terms looks as: 
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The viscosity model and the magnetic rotation tensor are, respectively, 
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The discretisation of the magnetic rotation tensor terms looks as: 
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The equation is solved by the similar Penta-diagonal system shown in section II and is found to be 
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Components of the magnetic field strength are defined similarly. 

Thus, all the components of the magnetic field strength are determined this way. 

 

2.5 Definition of homogeneous MHD turbulence characteristics 

It is important to average several volumetric values to determine turbulence properties in the physical space. The numbers that 

have been averaged will be utilised to identify the turbulent properties. The method described in articles by (Monin and 

Yaglom, 1975) and for computing the turbulence properties is similar to that described in (Batchelor 2019) [3]. The following 

formula is used to determine the value averaged throughout the full computed area. 
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The following ratio determines the microscale length: 
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The integral scale is expressed as 

 L /2 L /2 

 Λf(t) =f (r,t)dr, Λg(t) = ∫ g (r,t)dr. 

 0 0 

The following formula calculates the dissipation rate: 
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The turbulent kinematic energy is found in the following way: The turbulent kinetic and magnetic energy are, respectively, 
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Velocity derivative skewness is defined in the following form: 
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Flatness is defined in the following form 
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2.6 Analytical solution to the Taylor-Green vortex problem 

The traditional 3-D problem was used to verify the algorithm that was built. Without taking into account the magnetic field, 

Taylor and Green vortex flow is taken into account, and it was discovered that the simulated time-dependent turbulence 

characteristics of this flow are in very good agreement with the corresponding analytical solution that is only valid for short 

times. In order to test the numerical simulation of increasing order of precision in time and space O(t2,h4), with effective 

acceleration for the sequential method, we replicate the traditional example suggested in (Taylor and Green, 1937). starting 

from a straightforward three-dimensional incompressible initial condition of the kind. 

 

u1(x1, x2, x3, t = 0) = cos(ax1)sin(ax2)sin(ax3), 

 

u2(x1, x2, x3, t = 0) = −sin(ax1)cos(ax2)sin(ax3),         (19)  

 

u3(x1, x2, x3, t = 0) = 0. 

 

and assuming periodic conditions in a cubic domain: 0 ≤ x1 ≤ 2π,0 ≤ x2 ≤ 2π,0 ≤ x3 ≤ 2π with a = 1, the three-dimensional 

filtered Navier-Stokes equation. 
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maybe analysed via perturbation expansion at tiny periods. Where L is the physical domain size, UI is the velocity at I = 1, 2, 

3, which corresponds to the x1, x2, and x3 directions, Re = LU0/v is the Reynolds number of flow, U0 is the characteristic 

velocity, and T = aU0t, a = 2/L, the initial maximum velocity magnitude U0 has properly normalised all quantities in (1) in the 

x1 or x2 direction, and L/2. By, the pressure p has been returned to normal. Up to O(t5), Taylor and Green achieved a 

perturbation expansion of the velocity field. The average kinetic energy that results is:  
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The dissipation rate is written in the following form: 
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The turbulent flow's average kinetic energy and average rate of dissipation were compared between simulation at various 

Reynolds numbers and the analytical solution of the Taylor-Green vortex issue. Figure 2 shows the mean turbulent 

kinetic energy calculated in this study compared to the analytical Taylor-Green vortex problem solution for various Reynolds 

values. The average turbulent kinetic energy is consistent with the results of the analytical solution of the short time theory of 

the TG, spectral techniques at 2563 grid resolution, and hybrid finite difference approach at 1283 grid resolution up to T = 3 at 

Re = 100, and up to T = 4 at Re = 300 and Re = 600. The error between analytical and numerical solutions for the average 

kinetic energy was defined as Error(Ek) = |EkHFDM − EkTG| = 10−4. 

 

 
 

Fig 2: Comparative results of modeling the evolution of the average kinetic energy in time, spectral and hybrid methods of modeling the 

Taylor-Green vortex of: TG short-time theory at: 1) Re=100; 2)Re=300; 3)Re=600; Spectral method, 2563 at: 4)Re=100; 5)Re=300; 

6)Re=600; HFD method at: 7)Re=100; 8)Re=300; 9)Re=600. 

 

Figure 3 contrasts the numerical simulation's average rate of turbulence decay dissipation concerning time and the analytical 

solution to the Taylor-Green vortex issue at various Reynolds numbers. Figure 3 shows that until T = 2.5 for Re = 100 and T = 

2 for Re = 300 and Re = 600, the short-term theoretical predictions and the numerical simulation results are in good 

agreement. Since the analytical solution is only valid for a short period and the numerical solution can produce good results for 

a long period, comparing the simulation results of the spectrum approach with the HFD method over a long period is 

worthwhile. The tendency for the outcome of the analytical solution of the TG at Re = 100 shows a decrease in the rate of 

dissipation due to the decrease in the total Reynolds number of the stream after the rate of dissipation increases sharply due to 

the formation of small-scale flow structures and reaches a maximum at T = 3 for the short time theory of TG at Re = 100 and T 

= 4 for the other case. The simulation results show that: for the average dissipation rate, the difference between analytical and 

numerical solutions is: Error (ϵ) = |ϵHFDM − ϵTG| = 10−2. 
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Fig 3: Results of modelling the Taylor-Green vortex using the spectral and hybrid techniques for simulating the evolution of the average rate 

of dissipation of the decay of turbulence overtime at the following Re values: 1) Re=100; 2) Re=300; and 3) Re=600; and Spectral method, 

2563 at: HFD technique at 4)Re=100, 5)Re=300, 6)Re=600, and 7)Re=100, 8)Re=300, 9)Re=600. 

 

Figure 4 demonstrates how, for the 256x256x256 computational grid, the skewness of the turbulence results from the hybrid 

technique gradually move toward the exponential results from the pseudospectral method when the computational grid's 

resolution is increased. Figure 5 displays the outcomes of simulating the Taylor-Green vortex at Re = 300 using spectral, 

flatness, and hybrid approaches. 

 

3. Results and Discussion 

A numerical model may characterise the homogeneous magneto hydrodynamic turbulence decay based on a large eddy 

simulation. The magnetic viscosity was set in the m = 103 – 104 for this job, while the kinematic viscosity was assumed 

constant at v = 104. UCH = 1, LCH = 1, and HCH = 1 were chosen as the characteristic values for the velocity, length, and 

magnetic field strength, respectively. Re = 104 is the Reynolds number, and the magnetic Reynolds number varies with the 

magnetic viscosity coefficient. A = Ha2/Rem, where Hartmann's number is Ha = 1, characterises the velocity of conductive 

fluid for different numbers of magnetic Reynolds. 128x128x128 grid size was employed for the computations. The time step 

was equivalent to 0.001 seconds. The integral and Taylor scales were discovered due to various magnetic Reynolds values 

simulations. 

 

 
 

Fig 4: Comparison of the results of modeling the evolution of skewness, spectral and hybrid methods for modeling the Taylor-Green vortex 

of: TG short-time theory at: 1) Re=100; 2)Re=300; 3)Re=600; Spectral method, 2563 at: 4)Re=100; 5)Re=300; 6)Re=600; HFD method at: 

7)Re=100; 8)Re=300; 9)Re=600. 
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Fig 5: Comparison of the results of modeling the evolution of flatness, spectral and hybrid methods for modeling the Taylor-Green vortex 

of: TG short-time theory at: 1) Re=100; 2)Re=300; 3)Re=600; Spectral method, 2563 at: 4)Re=100; 5)Re=300; 6)Re=600; HFD method at: 

7)Re=100; 8)Re=300; 9)Re=600. 

 
 

Fig 6: shows the change in integral turbulence scale for various magnetic Reynolds numbers. Rem = 103, Rem = 2 103, Rem = 5 103, and 

Rem = 104. 
 

The semi-empirical turbulence theory predicts that the integral scale will increase over time. The findings are shown in Figure 

6 highlight how magnetic viscosity affects the internal makeup of MHD turbulence. Changes in the integral scale follow 

changes in the magnetic viscosity coefficient proportionally. Figure 6 demonstrates that the size of huge eddies grows rapidly 

for low magnetic Reynolds numbers (Rem = 103) as opposed to Rem = 104, which causes a quick energy dissipation. 

Figure 7 depicts the change at the micro-scale, estimated at various magnetic Reynolds numbers. Rem = 103, Rem = 2 103, 

Rem = 5 103, and Rem = 104. Figure 7 depicts the Taylor microscale's evolution at various magnetic Reynolds values. It is 

evident that in the scenario where Rem = 103, the dissipation rate rises when the magnetic viscosity coefficient is high. When 

the magnetic viscosity coefficient is lower, the scale progressively grows, and the turbulence's small-scale structure tends to 

slowly isotropy. This suggests that the degradation of isotropic turbulence happens more quickly when Rem is low than when 

Rem is large. Figure 7 depicts the change at the micro-scale, estimated at various magnetic Reynolds numbers. Rem = 103, 

Rem = 2 103, Rem = 5 103, and Rem = 104. Figure 7 depicts the Taylor microscale's evolution at various magnetic Reynolds 

values. It is evident that in the scenario where Rem = 103, the dissipation rate rises when the magnetic viscosity coefficient is 

high. When the magnetic viscosity coefficient is lower, the scale progressively grows, and the turbulence's small-scale 

structure tends to slowly isotropy. This suggests that the degradation of isotropic turbulence happens more quickly when Rem 

is low than when Rem is large. 
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Fig 7: Change of Taylor-scale calculated at different magnetic Reynolds numbers: 1)Rem = 103; 2)Rem = 2 · 103; 3)Rem = 5 · 103; 4)Rem = 104. 

 

4. Conclusion and Recommendation 

Based on the large-eddy simulation technique, a numerical model of the relationship between magnetic viscosity and the decay 

of magneto hydrodynamic turbulence was created. By examining the simulation results, the following finding can be drawn: 

the flow's magnetic viscosity significantly impacts the MHD turbulence. The obtained results enable the correct calculation of 

the magneto hydrodynamic turbulence's properties as they vary over time and at various magnetic Reynolds numbers. A 

numerical technique based on the hybrid approach was created to solve the unsteady three-dimensional Navier-Stokes 

equations and simulate the degradation of turbulence energy. The numerical algorithm is a hybrid technique that combines 

spectral and finite difference techniques. 

Additionally, it is computationally effective. For the solution of the Navier-Stokes equations, the finite-difference approach 

with the cyclic Penta-diagonal matrix allowed for the achievement of the fourth order in space and the accuracy of the second 

order in time. The spectral technique for solving the Poisson equation offers a high computing efficiency by utilising a quick 

Fourier transform library. 

The classical Taylor and Green issue with identical initial flow circumstances is considered to assess the devised method's 

suitability for simulating the degeneracy of the flow's kinetic energy and the temporal evolution of viscous dissipation. The 

mean kinetic energy and mean dissipation rate average normalised errors between analytical and numerical solutions were 

established as Error(Ek) = |Ek
FDM − Ek

TG| = 10−4, Error(ϵ) = |ϵFDM − ϵTG| = 10−2. respectively. As a result, there is excellent 

agreement between the numerical simulation results and the analytical solution. In order to solve unstable three-dimensional 

magneto hydrodynamic equations, a numerical technique was created. This algorithm allows one to model the MHD 

turbulence degradation at various magnetic Reynolds numbers. 
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