
~ 73 ~ 

International Journal of Mechanics of Solids 2026; 7(1): 73-77 
 

  
 

E-ISSN: 2707-8078 

P-ISSN: 2707-806X 

Journal's Website 

IJMS 2026; 7(1): 73-77 

Received: xx-10-2025 

Accepted: xx-11-2025 
 

Manjula Ramagiri 

Department of Mathematics  

University Arts and Science 

College (Autonomous) 

Kakatiya University 

Warangal, Telangana, India  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Author: 

Manjula Ramagiri 

Department of Mathematics  

University Arts and Science 

College (Autonomous) 

Kakatiya University 

Warangal, Telangana, India 

 

The influence of initial stress on magnetic field-

induced deformations in poroelastic hollow cylinders 

 
Manjula Ramagiri 
 

DOI: https://www.doi.org/10.22271/2707806X.2026.v7.i1b.62  

 
Abstract 
This work examines torsional wave propagation in a poroelastic hollow cylinder under the influence of 

a magnetic field and starting load. The frequency equation is derived using boundary conditions. The 

governing equations are formulated based on Biot's theory of deformation. The non-dimensional 

frequency is determined in relation to the ratio for various values of magnetic field and beginning 

stress. The theoretically generated results are calculated for two types of materials and displayed 

graphically. 
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1. Introduction 
Wave propagation in poroelastic hollow cylinders has become very important in recent 

decades. The investigation of starting stress in a poroelastic hollow cylinder under magnetic 

field effects entails examining how initial stresses, poroelastic material characteristics, and 

external magnetic fields interact to affect the cylinder's mechanical, magnetic, and fluid flow 

properties. This is applicable in disciplines such as geophysics, biomedical engineering, and 

structural mechanics. The analysis of wave propagation in cylinders aimed to determine the 

frequencies associated with several modes of vibration: flexural, torsional, and longitudinal, 

through the formulation of a frequency equation. Initial stresses markedly modify the 

stiffness of the cylinder, affecting the natural frequencies and mode shapes of torsional 

vibrations. Elevated initial stress levels can either support or destabilize the cylinder, 

contingent upon their distribution and interaction with other forces. Comprehending how 

torsional vibrations react to magnetic fields and starting strains facilitates enhanced 

diagnostics in pipelines, boreholes, and biological applications. Resolving the coupled 

equations for torsional vibrations in poroelastic material influenced by magnetic fields is 

computationally demanding, necessitating sophisticated numerical techniques. The study 

examines magnetoelastic torsional waves in a bar subjected to initial load, as detailed in [1]. 

The investigation of torsional waves in a viscoelastic, initially strained cylinder situated 

within a magnetic field is presented in [2]. The torsional vibrations of a stiff circular plate on 

transversely isotropic saturated soil are examined in [3]. A transient torsional wave in a finite 

hollow cylinder with initial axial stress is discussed in [4]. The torsional vibrations of a non-

homogeneous magnetostrictive elastic circular cylinder are examined in [5]. The study 

examines torsional waves in a pre-stressed fiber-reinforced media under the influence of a 

magnetic field, as detailed in [6]. The discussion in [7] pertains to magneto-electro-viscoelastic 

torsional waves in an aeolotropic tube subjected to initial compressive stress. The presence 

of torsional surface waves in a porous crustal layer situated above an initially stressed 

inhomogeneous half-space is discussed in [8]. The propagation of torsional surface waves in 

an inhomogeneous anisotropic fluid-saturated porous layered half-space under initial load 

with variable characteristics is examined in [9]. The impact of irregularities on torsional 

surface waves in an initially strained anisotropic porous layer situated between homogeneous 

and non-homogeneous half-spaces is examined in [10]. The impact of a corrugated boundary 

surface and a reinforced layer on the propagation of torsional surface waves is examined in 
[11]. The dispersion of torsional surface waves in an intermediate vertical pre-stressed 

inhomogeneous layer situated between heterogeneous half-spaces is discussed in [12].  
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The impact of initial conditions and gravity on torsional 

surface waves in heterogeneous media is discussed in [13]. 

The effects of longitudinal magnetic fields on the torsional 

vibrations of carbon nanotubes are examined in [14]. The 

investigation of torsional vibrations in a poroelastic 

dissipative thick-walled hollow cylinder under initial stress 

is presented in [15]. The study in [16] examines the torsional 

vibrations of irregular single-walled carbon nanotubes, 

considering the consequences of compressive starting stress. 

The study of torsional wave propagation in a sandwiched 

magneto-poroelastic dissipative transversely isotropic 

medium is discussed in [17]. The study of torsional waves in 

a dissipative cylindrical shell subjected to initial tension is 

presented in [18]. The study of torsional wave propagation in 

a porothermoelastic hollow cylinder is conducted in [19]. The 

study of torsional vibrations in magnetic field poroelastic 

hollow cylinders is examined in [20]. The study of initial 

stress effects on torsional vibrations in anisotropic magneto-

poroelastic hollow cylinders is detailed in [21]. This research 

examines the influence of magnetic field and starting stress 

on torsional vibrations in a poroelastic hollow cylinder. The 

displacement components have been acquired. Upon 

applying appropriate boundary conditions, the frequency 

equation is derived in the context of a magnetic field and 

initial stress. The non-dimensional frequency is determined 

in relation to the ratio for various values of magnetic field 

and beginning stress. The results are ultimately presented in 

graphical format. 

 

2. Governing equations and solution of the problem 

Let z),(r,  be the cylindrical polar coordinates. Consider 

a homogenous isotropic hollow poroelastic cylinder with 

inner and outer radii a  and b , respectively, whose axis is 

in the direction of z  -axis. The equations of motion are 

given in [1]: 
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Where ),,( wvuu


and ),,( WVUU


be the solid and fluid 

displacements.
 ijρ  

are mass coefficients.
 

zrrzzzrr   ,,,,,  are stresses components 

and  ,r  are rotational components, fluid pressure s  . 

),,( zr FFFF   is the Lorentz force per unit volume due 

to the axial magnetic field is given by [1]
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The stress components ij  and fluid pressure [22] are 
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In eq. (3), ije ’s strain displacements, ijσ ’s solid stresses and 

fluid pressure s , ijδ  the well-known Kroneckar delta 

function. e and ε  are the dilatations of solid and fluid 

respectively; the symbols R , Q N, A, are all poroelastic 

constants. Maxwell equations governing the electromagnetic 

fields for slowly moving solid medium having electrical 

conductivity are [1]  
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Where displacement current is neglected and by ohm’s law 
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In eq. (4) and (5) JEBH ,,,  are respectively the magnetic 

intensity, magnetic induction, electric intensity and current 

density vectors; ue ,,  are magnetic permeability and 

electrical conductivity of the body, displacement vector in 

strained state and c  is the velocity of light. The 

electromagnetic field equations in vacuum are [1] 
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(6) 

 

Where 
h the perturbation is magnetic field in vacuum and 

E  is the electric field in vacuum. Now let suppose 

that hHH  0 , where 0H the initial magnetic field 

acting parallel to is h  is small perturbation in the field. If 

the cylinder is a perfect conductor of electricity 

(i.e,  ) hence eq. (5) gives 

 

)0,0,(
1

t

v

c

H
B

t

u

c
E









   (7) 

 

Where 0HH  . Eliminating E  from eq. (4) and eq.  

(7) we obtain 
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From eq. (4) and eq. (8) we get 
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In the case of torsional vibrations, the equations of motion 

eq. (1) reduced to the following equations: 
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Assume that the wave solution takes the following form 
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In eq. (11)  is the frequency, k  is the wavenumber, and t  

is time. Substituting eq. (11) and eq. (3) in eq. (10), we 

obtains 
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The solution of eq. (12) takes the following form 
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constants and )(),( 11 qrYqrJ are Bessel’s functions of 

first kind. sV  is the shear wave velocity [7]. The non-zero 

stresses are  
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3. Boundary conditions and frequency equation 

The boundary conditions that define the inner and outer 

surfaces are unconstrained at  

 

ar  and br  are 

0 r  at ar   and 

0 r  at br    (15)  

 

By employing equations (15) and (14), we get two 

homogeneous equations. 
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By eliminating the constants, we derive the frequency 

equation. 
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4. Non-dimensional for the frequency equation 

To find the frequency equation it is necessary to introduce 

non-dimensional quantities  
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In the eq (18), c  is the phase velocity, 0c  and 0V  are 

reference velocities ),( 1

1

2

0

12

0

   HVNc  and then 

m is non-dimensional phase velocity,  is non-

dimensional frequency and 

.2,2 1221211 RQPH    
 

5. Numerical results 

The numerical results consider two types of materials: 

cylinder-I, composed of water-saturated sandstone, and 

cylinder-II, composed of kerosene-saturated sandstone, as 

referenced in [23, 24]. The non-dimensional parameters are 

presented in Table I. 

 
Table 1: The non-dimensional parameters are presented  

 

Materials a4
 

d1
 

d2
 

d3
 

Z
 

Cylinder-I 0.412 0.877 0 0.123 2.129 

Cylinder-II 0.234 0.901 -0.001 0.101 3.851 

 

For specified poroelastic materials, the derived frequency 

equation, when non-dimensionalized using equation (18), 

establishes a relationship between the non-dimensional 

frequency and the ratio. The non-dimensional frequency is 

calculated for both cylinder-I and cylinder-II. The non-

dimensional frequency is calculated for various values of 

the ratio, initial stress, and magnetic field. Figure 1 

illustrates the non-dimensional frequency plotted against the 

ratio for cylinder-I. The non-dimensional frequency reaches 

its peak at h=0.6 as the initial stress and magnetic field 

increase, exhibiting periodic characteristics. Figure 2 

illustrates the non-dimensional frequency plotted against the 

ratio for cylinder-II. The non-dimensional frequency reaches 

its maximum at h=0.4 as the initial stress and magnetic field 

increase. Figure 3 illustrates the non-dimensional frequency 

plotted against the ratio for cylinder-I and cylinder-II. All 

the figures clearly indicate that the curves are periodic in 

character. Typically, the values of cylinder-II exceed those 

of cylinder-I. The data clearly indicate that the values for 

cylinder II exceed those of cylinder I. The effects arise from 

magnetic coupling and initial stress within the solid 

component. 
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Fig 1: Nondimensional frequency versus ratio for different initial stress and magnetic field for cylinder-I 

 

 
 

Fig 2: Nondimensional frequency versus ratio for different initial 

stress and magnetic field for cylinder-II 
 

 
 

Fig 3: Nondimensional frequency versus ratio for different initial 

stress and magnetic field 

 

Conclusion 

The torsional vibrations of a poroelastic hollow cylinder 

subjected to a magnetic field and initial stress stress have 

been investigated. The research highlights the significance 

of evaluating the synergistic effects of initial stress magnetic 

fields and poroelasticity in the analysis of torsional 

vibrations in hollow cylinders. These discoveries possess 

extensive applications in engineering, geophysics, 

biomechanics, and materials science, facilitating the 

development of more resilient and efficient designs in 

difficult environmental situations. The frequency equation is 

derived considering the influence of the magnetic field and 

initial stress. In all instances, as the ratio grows, the 

frequency exhibits periodic characteristics. 
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