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Abstract 
Single-degree-of-freedom (SDOF) systems form the fundamental basis for understanding structural and 

mechanical vibrations. Classical linear vibration theory provides closed-form solutions and clear 

physical interpretations; however, many practical engineering systems exhibit mild nonlinear stiffness 

due to geometric effects, material behavior, boundary conditions, or large deformation responses. Such 

nonlinearities, though weak, can significantly influence dynamic characteristics, including resonance 

frequency shifts, amplitude-dependent behavior, and stability of motion. This research examines the 

dynamic response of SDOF systems incorporating mild nonlinear stiffness under harmonic excitation. 

The governing equation of motion is formulated by introducing a cubic stiffness term in addition to the 

linear restoring force, representing weak nonlinearity commonly encountered in engineering 

applications. Analytical approaches, including perturbation-based methods, are emphasized to derive 

approximate solutions that describe steady-state and transient responses. The influence of nonlinear 

stiffness on frequency-response curves, jump phenomena, and softening or hardening behavior is 

systematically discussed. Special attention is given to the transition from linear to nonlinear response 

regimes and the conditions under which linear approximations become inadequate. The research further 

highlights the relevance of mild nonlinearity in predicting realistic system behavior, particularly near 

resonance conditions where small deviations from linearity may produce disproportionately large 

dynamic effects. By synthesizing theoretical insights with established vibration concepts, this work 

aims to clarify the physical implications of nonlinear stiffness in SDOF systems. The findings are 

intended to support improved modeling accuracy and more reliable dynamic analysis in mechanical 

and structural engineering practice, where simplified linear models may fail to capture essential 

response characteristics under operational loading conditions. 
 

Keywords: Single-degree-of-freedom system, nonlinear stiffness, dynamic response, harmonic 

excitation, vibration analysis 

 

Introduction 

Single-degree-of-freedom systems have long been used as idealized models for analyzing 

vibration behavior in mechanical and structural systems because they allow fundamental 

dynamic principles to be studied with mathematical clarity [1]. Traditional vibration theory 

assumes linear stiffness and damping, leading to superposition and frequency-independent 

system properties, which are valid for small-amplitude motions [2]. However, experimental 

observations and practical applications demonstrate that even simple mechanical components 

often exhibit mild nonlinear stiffness arising from geometric nonlinearity, material 

constitutive behavior, or boundary condition imperfections [3]. When such nonlinearities are 

present, system response may deviate from linear predictions, particularly near resonance, 

resulting in amplitude-dependent frequencies and altered stability characteristics [4]. Despite 

being weak, nonlinear stiffness can produce significant qualitative changes in the dynamic 

response, including jump phenomena and multiple steady-state solutions [5]. Many 

engineering designs continue to rely on linear approximations, which may underestimate 

response amplitudes or misrepresent resonance conditions when nonlinear effects are active 
[6]. Analytical methods such as perturbation techniques and averaging methods have 

therefore been developed to research weakly nonlinear SDOF systems while retaining 

physical interpretability [7]. Previous studies have shown that cubic stiffness terms can 

effectively model mild nonlinear behavior and capture hardening or softening responses 

observed in real systems [8]. Understanding these effects is essential for accurate vibration 

prediction, fatigue assessment, and dynamic stability evaluation [9]. The primary objective of  

https://www.mechanicaljournals.com/mechanics-solids
https://www.doi.org/10.22271/2707806X.2026.v7.i1a.61


International Journal of Mechanics of Solids https://www.mechanicaljournals.com/mechanics-solids 

~ 45 ~ 

this research is to examine the dynamic response 

characteristics of SDOF systems with mild nonlinear 

stiffness under harmonic excitation, focusing on frequency-

response behavior and resonance shifts [10]. It is 

hypothesized that even small nonlinear stiffness 

contributions can substantially modify steady-state response 

near resonance compared to linear theory predictions [11]. By 

integrating established nonlinear vibration concepts with 

classical SDOF modeling, this work seeks to provide a 

coherent framework for assessing when nonlinear analysis 

becomes necessary for reliable dynamic response estimation 
[12]. 

 

Materials and Methods 

Materials: A single-degree-of-freedom (SDOF) forced-

vibration model with mild nonlinear stiffness was 

considered, using the Duffing-type restoring force 

formulation widely used for weakly nonlinear oscillators in 

structural and mechanical dynamics [3, 8, 9]. The governing 

parameters were selected to remain in the “mild 

nonlinearity” regime relevant to practical vibration 

modeling [6, 11, 15]. The baseline linear properties were mass 

m=1.0m=1.0m=1.0 kg, linear natural frequency 

ωn=10\omega_n=10ωn=10 rad/s, and viscous damping ratio 

ζ=0.04\zeta=0.04ζ=0.04, consistent with standard vibration 

texts [1, 2, 15]. A cubic stiffness coefficient 

α=5000\alpha=5000α=5000 N/m3^33 (hardening, 

α>0\alpha>0α>0) was used to represent mild stiffness 

nonlinearity that induces amplitude-dependent resonance [4, 

8, 9]. Harmonic forcing levels were set to F0= {0.2, 0.4, 0.6} 

F_0=\ {0.2, 0.4, 0.6\} F0= {0.2, 0.4, 0.6} N to avoid strong 

jump-dominated branches while still exposing nonlinear 

frequency shifts [5, 10]. All computations and plots were 

generated in Python using first-harmonic response quantities 

(amplitude and phase), a standard approximation for weakly 

nonlinear steady-state analysis [7, 8, 17]. 

 

Methods 

The forced nonlinear equation of motion was defined as 

mx¨+cx˙+kx+αx3=F0cos⁡(ωt)m\ddot{x}+c\dot{x}+kx+\al

pha x^3 = F_0\cos(\omega t)mx¨+cx˙+kx+αx3=F0cos(ωt), 

with k=mωn2k=m\omega_n^2k=mωn2 and 

c=2ζmωnc=2\zeta m\omega_nc=2ζmωn [1-3]. Steady-state 

response was estimated using first-harmonic balance, 

yielding an algebraic amplitude equation in AAA (via 

r=A2r=A^2r=A2) that captures the hardening frequency-

response bending and resonance shift typical of Duffing 

oscillators [7-9]. A frequency sweep ω∈ [6, 16] \omega\in [6, 16] 

ω∈ [6, 16] rad/s (121 points) was performed per forcing level, 

and a simple root-continuation rule selected the physically 

consistent solution branch across adjacent frequencies to 

maintain response continuity [9, 12]. Statistical analysis was 

applied to synthesized response outputs:  

1. One-way ANOVA comparing amplitudes sampled at 

ω= {9.5, 10.0, 10.5} \omega=\ {9.5, 10.0, 10.5\} ω= 

{9.5, 10.0, 10.5} rad/s across forcing groups, to test 

whether forcing level significantly changes response 

near linear resonance [13, 16]; and  

2. Linear regression of the peak-frequency shift 

ωpeak\omega_{\text{peak}} ωpeak against 

Apeak2A_{\text{peak}} ^2Apeak2 (backbone-style 

trend) to quantify amplitude-dependent resonance 

behavior expected in hardening systems [8-10, 14, 17, 18]. 

 

Results 

 
Table 1: Model parameters and simulation design (Duffing SDOF with mild hardening stiffness) 

 

Item Value Units/Notes 

Mass mmm 1.0 kg 

Linear natural frequency ωn\omega nωn 10.0 rad/s 

Damping ratio ζ\zetaζ 0.04 - 

Cubic stiffness α\alphaα 5000.0 N/m3^33 (hardening) 

Forcing amplitudes F0F_0F0 0.2, 0.4, 0.6 N 

Frequency sweep ω\omegaω 6.0-16.0 (121 points) rad/s 

Solution approach Harmonic balance + continuation Weakly nonlinear steady-state method [7-9] 

 

 
 

Fig 1: Frequency-response curves show hardening-type rightward bending with increasing forcing 
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Table 2: Peak-response summary (from swept steady-state solutions) 
 

F0F_0F0 (N) ωpeak\omega_{\text{peak}}ωpeak (rad/s) ApeakA_{\text{peak}} Apeak (m) 

0.2 10.083333 0.024721 

0.4 10.416667 0.047994 

0.6 10.833333 0.069096 

 
Peak amplitude increases monotonically with forcing, while 
ωpeak\omega_{\text{peak}} ωpeak shifts to higher values, 
matching the expected amplitude-dependent resonance shift 
in hardening nonlinear systems [8-10]. Notably, the shift is 

modest in absolute terms (≈0.75 rad/s across the tested 
forcing range), which is typical of mild nonlinear stiffness 
where linear theory remains qualitatively useful but 
quantitatively biased near resonance [3, 7]. 

 
Table 3: Statistical analysis of response differences and resonance-shift quantification 

 

Analysis Statistic p-value / fit 

One-way ANOVA (A at ω=9.50, 10.00, 10.50\omega = 
9.50, 10.00, 10.50ω=9.50, 10.00, 10.50 rad/s) 

F (2, 6) =7.61F (2, 6) =7.61F (2, 6) =7.61 p=0.0226p=0.0226p=0.0226 

Linear regression (ωpeak\omega_{\text{peak}} ωpeak vs 
Apeak2A_{\text{peak}} ^2Apeak2) 

ωpeak=9.985+179.3 Apeak2\omega_{\text{peak}} 
=9.985+179.3\, A_{\text{peak}} ^2ωpeak

=9.985+179.3Apeak2 
R2=0.998R^2=0.998R2=0.998 

 
The ANOVA indicates a statistically significant dependence 
of near-resonance amplitude on forcing level 
(p<0.05p<0.05p<0.05), consistent with nonlinear 
amplification behavior where response scaling is not purely 
linear in forcing near resonance due to the nonlinear 
stiffness contribution [13, 16]. The regression shows an 
excellent fit between ωpeak\omega_{\text{peak}} ωpeak 

and Apeak2A_{\text{peak}} ^2Apeak2, supporting the 
backbone-style amplitude-frequency coupling central to 
Duffing dynamics and nonlinear modal interpretations [8, 9, 

12, 17]. Practically, this implies that small increases in 
vibration amplitude can measurably detune resonance, 
which affects design decisions for vibration isolation, 
fatigue avoidance, and operational stability margins [11, 14, 18]. 

 

 
 

Fig 2: Peak-frequency shift increases approximately linearly with Apeak2A_{\text{peak}} ^2Apeak2 (backbone trend) 

 

 
 

Fig 3: Representative steady-state displacement near ωpeak\omega_{\text{peak}} ωpeak (sinusoidal first-harmonic approximation) 
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Discussion 

The present research systematically examined the steady-

state dynamic response of a single-degree-of-freedom 

system exhibiting mild nonlinear stiffness, focusing on 

amplitude-frequency interaction, resonance shifting, and 

statistical sensitivity to excitation levels. The frequency-

response curves obtained using harmonic balance with 

continuation clearly demonstrate a hardening-type 

nonlinearity, characterized by rightward bending of the 

resonance peak as excitation amplitude increases. This 

behavior is consistent with classical Duffing oscillator 

theory, where a positive cubic stiffness term introduces an 

amplitude-dependent effective stiffness that modifies the 

resonance condition [3, 8, 9]. Unlike purely linear systems, 

where resonance frequency remains invariant with forcing, 

the nonlinear system shows progressive detuning as 

oscillation amplitude grows, confirming that even weak 

nonlinearities can significantly alter response predictions 

near resonance [4, 6, 10]. 

The monotonic increase in peak response amplitude with 

forcing level, coupled with the upward shift in peak 

frequency, highlights the limitations of linear vibration 

assumptions in realistic operating conditions [1, 2, 11]. 

Statistical evaluation using one-way ANOVA further 

supports this observation by demonstrating that near-

resonance amplitudes differ significantly across forcing 

groups, indicating nonlinear sensitivity rather than 

proportional scaling [13, 16]. This statistical evidence 

reinforces earlier analytical and experimental findings that 

nonlinear stiffness introduces qualitative changes in system 

response, even when nonlinearity is considered mild [5, 7]. 

The regression analysis linking peak frequency to the square 

of peak amplitude shows an excellent fit, consistent with 

backbone curve interpretations commonly used in nonlinear 

modal analysis [8, 9, 12, 17]. Such amplitude-frequency 

relationships are fundamental to understanding jump 

phenomena, stability boundaries, and bifurcation behavior 

in nonlinear oscillators, although strong jumps were 

intentionally avoided here through moderate damping and 

forcing [14, 18]. The representative time-domain response 

further confirms that, within the mild nonlinearity regime, 

the steady-state motion remains predominantly single-

harmonic, validating the applicability of first-harmonic 

balance for engineering-level analysis [7, 15]. 

Overall, the results emphasize that mild nonlinear stiffness 

should not be dismissed as a secondary effect, particularly 

in precision mechanical systems, lightweight structures, and 

components operating close to resonance. Incorporating 

nonlinear stiffness terms into simplified SDOF models 

provides a more realistic and reliable basis for vibration 

prediction, design assessment, and dynamic safety 

evaluation [6, 11, 15]. 

 

Conclusion 

This research demonstrates that even mild nonlinear 

stiffness can exert a decisive influence on the dynamic 

response of single-degree-of-freedom systems, particularly 

in the vicinity of resonance where engineering components 

are most vulnerable to excessive vibration. The observed 

amplitude-dependent resonance shift confirms that linear 

vibration models, while mathematically convenient, may 

lead to inaccurate prediction of critical frequencies and 

response amplitudes under realistic excitation conditions. 

The strong correlation between peak frequency and squared 

response amplitude underscores the physical relevance of 

nonlinear backbone behavior in practical systems and 

highlights the need to treat stiffness nonlinearity as an 

inherent property rather than an exception. From an 

application perspective, these findings suggest that 

designers and analysts should incorporate nonlinear stiffness 

effects during early-stage modeling, especially for 

lightweight structures, compliant mechanisms, rotating 

machinery, and components subjected to variable dynamic 

loading. Practical implementation may include adopting 

nonlinear reduced-order models for preliminary design 

screening, adjusting operational frequency ranges to account 

for amplitude-induced detuning, and introducing sufficient 

damping to suppress abrupt resonance shifts. In vibration 

isolation and fatigue-sensitive systems, conservative design 

margins should be established by considering nonlinear 

response envelopes rather than linear resonance peaks alone. 

Furthermore, experimental modal testing protocols should 

be adapted to include amplitude-dependent frequency 

identification so that in-service dynamic characteristics are 

accurately captured. For control and monitoring 

applications, real-time tracking of response amplitude can 

be used as an indirect indicator of resonance migration, 

enabling adaptive control or preventive shutdown strategies. 

By integrating these practical measures with simplified 

nonlinear modeling approaches, engineers can significantly 

improve prediction reliability, operational safety, and long-

term durability of dynamically loaded systems. 
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