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Abstract

Single-degree-of-freedom (SDOF) systems form the fundamental basis for understanding structural and
mechanical vibrations. Classical linear vibration theory provides closed-form solutions and clear
physical interpretations; however, many practical engineering systems exhibit mild nonlinear stiffness
due to geometric effects, material behavior, boundary conditions, or large deformation responses. Such
nonlinearities, though weak, can significantly influence dynamic characteristics, including resonance
frequency shifts, amplitude-dependent behavior, and stability of motion. This research examines the
dynamic response of SDOF systems incorporating mild nonlinear stiffness under harmonic excitation.
The governing equation of motion is formulated by introducing a cubic stiffness term in addition to the
linear restoring force, representing weak nonlinearity commonly encountered in engineering
applications. Analytical approaches, including perturbation-based methods, are emphasized to derive
approximate solutions that describe steady-state and transient responses. The influence of nonlinear
stiffness on frequency-response curves, jump phenomena, and softening or hardening behavior is
systematically discussed. Special attention is given to the transition from linear to nonlinear response
regimes and the conditions under which linear approximations become inadequate. The research further
highlights the relevance of mild nonlinearity in predicting realistic system behavior, particularly near
resonance conditions where small deviations from linearity may produce disproportionately large
dynamic effects. By synthesizing theoretical insights with established vibration concepts, this work
aims to clarify the physical implications of nonlinear stiffness in SDOF systems. The findings are
intended to support improved modeling accuracy and more reliable dynamic analysis in mechanical
and structural engineering practice, where simplified linear models may fail to capture essential
response characteristics under operational loading conditions.

Keywords: Single-degree-of-freedom system, nonlinear stiffness, dynamic response, harmonic
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Introduction

Single-degree-of-freedom systems have long been used as idealized models for analyzing
vibration behavior in mechanical and structural systems because they allow fundamental
dynamic principles to be studied with mathematical clarity (4. Traditional vibration theory
assumes linear stiffness and damping, leading to superposition and frequency-independent
system properties, which are valid for small-amplitude motions 2. However, experimental
observations and practical applications demonstrate that even simple mechanical components
often exhibit mild nonlinear stiffness arising from geometric nonlinearity, material
constitutive behavior, or boundary condition imperfections 1. When such nonlinearities are
present, system response may deviate from linear predictions, particularly near resonance,
resulting in amplitude-dependent frequencies and altered stability characteristics . Despite
being weak, nonlinear stiffness can produce significant qualitative changes in the dynamic
response, including jump phenomena and multiple steady-state solutions [l Many
engineering designs continue to rely on linear approximations, which may underestimate
response amplitudes or misrepresent resonance conditions when nonlinear effects are active
61, Analytical methods such as perturbation techniques and averaging methods have
therefore been developed to research weakly nonlinear SDOF systems while retaining
physical interpretability 1. Previous studies have shown that cubic stiffness terms can
effectively model mild nonlinear behavior and capture hardening or softening responses
observed in real systems [€l. Understanding these effects is essential for accurate vibration
prediction, fatigue assessment, and dynamic stability evaluation [°1. The primary objective of
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this research is to examine the dynamic response
characteristics of SDOF systems with mild nonlinear
stiffness under harmonic excitation, focusing on frequency-
response behavior and resonance shifts [9. It s
hypothesized that even small nonlinear stiffness
contributions can substantially modify steady-state response
near resonance compared to linear theory predictions (4, By
integrating established nonlinear vibration concepts with
classical SDOF modeling, this work seeks to provide a
coherent framework for assessing when nonlinear analysis

becomes necessary for reliable dynamic response estimation
[12]

Materials and Methods

Materials: A single-degree-of-freedom (SDOF) forced-
vibration model with mild nonlinear stiffness was
considered, using the Duffing-type restoring force
formulation widely used for weakly nonlinear oscillators in
structural and mechanical dynamics [ & . The governing
parameters were selected to remain in the “mild
nonlinearity” regime relevant to practical vibration
modeling © 1% 151, The baseline linear properties were mass
m=1.0m=1.0m=1.0 kg, linear natural frequency
on=10\omega n=100n=10 rad/s, and viscous damping ratio
(=0.04\zeta=0.04{=0.04, consistent with standard vibration
texts [ 2 1 A cubic stiffness coefficient
a=5000\alpha=50000=5000 N/m3733 (hardening,
a>0\alpha>00>0) was used to represent mild stiffness
nonlinearity that induces amplitude-dependent resonance
891 Harmonic forcing levels were set to FO= {0.2, 0.4, 0.6}
F_0=\ {0.2, 0.4, 0.6\} FO= {0.2, 0.4, 0.6} N to avoid strong
jump-dominated branches while still exposing nonlinear
frequency shifts > 19 All computations and plots were
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generated in Python using first-harmonic response quantities
(amplitude and phase), a standard approximation for weakly
nonlinear steady-state analysis [ 8 171,

Methods
The forced nonlinear equation of motion was defined as
mx+cx +kx+ox3=F0cos /0}(wt)m\ddot{x}+c\dot{x}+kx-+\al
pha x3 = F_0O\cos(\omega t)mx"+cx +kx+ax3=FOcos(wt),
with k=mon2k=m\omega n"2k=mmn?2 and
c=2{monc=2\zeta Mlomega nc=2{mwn I, Steady-state
response was estimated using first-harmonic balance,
yielding an algebraic amplitude equation in AAA (via
r=A2r=A"2r=A2) that captures the hardening frequency-
response bending and resonance shift typical of Duffing
oscillators [91. A frequency sweep o€ [ 161 \omegalin [6 6]
o€ 516 rad/s (121 points) was performed per forcing level,
and a simple root-continuation rule selected the physically
consistent solution branch across adjacent frequencies to
maintain response continuity [ 12, Statistical analysis was
applied to synthesized response outputs:

1. One-way ANOVA comparing amplitudes sampled at
o= {9.5, 10.0, 10.5} \omega=\ {9.5, 10.0, 10.5\} w=
{9.5, 10.0, 10.5} rad/s across forcing groups, to test
whether forcing level significantly changes response
near linear resonance 1% %6l and

2. Linear regression of the peak-frequency shift
wpeak\omega_{\text{peak}} wpeak against
Apeak2A_ {\text{peak}} "2Apeak2 (backbone-style
trend) to quantify amplitude-dependent resonance
behavior expected in hardening systems [-10. 14,17, 18],

Results

Table 1: Model parameters and simulation design (Duffing SDOF with mild hardening stiffness)

Item Value Units/Notes
Mass mmm 1.0 kg
Linear natural frequency on\omega non 10.0 rad/s
Damping ratio {\zetal 0.04 -
Cubic stiffness a\alphaa 5000.0 N/m3~33 (hardening)
Forcing amplitudes FOF_OFO0 0.2,0.4,0.6 N
Frequency sweep ®\omegawm 6.0-16.0 (121 points) rad/s

Solution approach

Harmonic balance + continuation

Weakly nonlinear steady-state method [/

0.07 4 —— F0=0.2
F0=0.4
0.06 - — F0=0.6
E
< 0.05 4
[
©
2
= 0.04 1
£
©
(]
2 0.03 -
i
>
©
§ 0.02 4
)
0.01 A1
0.00 |
6 8 10 12 14 16
Excitation frequency w (rad/s)

Fig 1: Frequency-response curves show hardening-type rightward bending with increasing forcing
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Table 2: Peak-response summary (from swept steady-state solutions)

FOF_OF0 (N) opeak\omega_{\text{peak}}opeak (rad/s) ApeakA_ {\text{peak}} Apeak (m)
0.2 10.083333 0.024721
0.4 10.416667 0.047994
0.6 10.833333 0.069096

Peak amplitude increases monotonically with forcing, while
wpeak\omega_{\text{peak}} wpeak shifts to higher values,
matching the expected amplitude-dependent resonance shift
in hardening nonlinear systems (1%, Notably, the shift is

modest in absolute terms (=0.75 rad/s across the tested
forcing range), which is typical of mild nonlinear stiffness
where linear theory remains qualitatively useful but
quantitatively biased near resonance 371,

Table 3: Statistical analysis of response differences and resonance-shift quantification

Analysis

Statistic p-value / fit

One-way ANOVA (A at ®=9.50, 10.00, 10.50\omega =
9.50, 10.00, 10.500=9.50, 10.00, 10.50 rad/s)

F (2, 6) =7.61F (2, 6) =7.61F (2, 6) =7.61

p=0.0226p=0.0226p=0.0226

Linear regression (wpeak\omega_{\text{peak}} wpeak vs
Apeak2A_{\text{peak}} ~2Apeak2)

wpeak=9.985+179.3 Apeak2\omega_{\text{peak}}
=9.985+179.3\, A_{\text{peak}} "2mwpeak

R2=0.998R"2=0.998R2=0.998

=9.985+179.3Apeak?2

The ANOVA indicates a statistically significant dependence
of  near-resonance  amplitude on  forcing level
(p<0.05p<0.05p<0.05),  consistent ~ with  nonlinear
amplification behavior where response scaling is not purely
linear in forcing near resonance due to the nonlinear
stiffness contribution [*% 161 The regression shows an
excellent fit between wpeak\omega_{\text{peak}} wpeak

and Apeak2A_ {\text{peak}} "2Apeak2, supporting the
backbone-style amplitude-frequency coupling central to
Duffing dynamics and nonlinear modal interpretations ©
1217 Practically, this implies that small increases in
vibration amplitude can measurably detune resonance,
which affects design decisions for vibration isolation,
fatigue avoidance, and operational stability margins [ 14181,
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Peak frequency w_peak (rad/s)

10.2 A

0.001 0.002

Peak amplitude squared A_peak”™2 (m~2)

0.003 0.004 0.005

Fig 2: Peak-frequency shift increases approximately linearly with Apeak2A_{\text{peak}} ~2Apeak2 (backbone trend)
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Fig 3: Representative steady-state displacement near wpeak\omega_{\text{peak}} wpeak (sinusoidal first-harmonic approximation)
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Discussion

The present research systematically examined the steady-
state dynamic response of a single-degree-of-freedom
system exhibiting mild nonlinear stiffness, focusing on
amplitude-frequency interaction, resonance shifting, and
statistical sensitivity to excitation levels. The frequency-
response curves obtained using harmonic balance with
continuation clearly demonstrate a hardening-type
nonlinearity, characterized by rightward bending of the
resonance peak as excitation amplitude increases. This
behavior is consistent with classical Duffing oscillator
theory, where a positive cubic stiffness term introduces an
amplitude-dependent effective stiffness that modifies the
resonance condition [ & 91 Unlike purely linear systems,
where resonance frequency remains invariant with forcing,
the nonlinear system shows progressive detuning as
oscillation amplitude grows, confirming that even weak
nonlinearities can significantly alter response predictions
near resonance [ 6101,

The monotonic increase in peak response amplitude with
forcing level, coupled with the upward shift in peak
frequency, highlights the limitations of linear vibration
assumptions in realistic operating conditions [ 2 11,
Statistical evaluation using one-way ANOVA further
supports this observation by demonstrating that near-
resonance amplitudes differ significantly across forcing
groups, indicating nonlinear sensitivity rather than
proportional scaling [3 16 This statistical evidence
reinforces earlier analytical and experimental findings that
nonlinear stiffness introduces qualitative changes in system
response, even when nonlinearity is considered mild 71,
The regression analysis linking peak frequency to the square
of peak amplitude shows an excellent fit, consistent with
backbone curve interpretations commonly used in nonlinear
modal analysis & % 12 171 Sych amplitude-frequency
relationships are fundamental to understanding jump
phenomena, stability boundaries, and bifurcation behavior
in nonlinear oscillators, although strong jumps were
intentionally avoided here through moderate damping and
forcing 4 18 The representative time-domain response
further confirms that, within the mild nonlinearity regime,
the steady-state motion remains predominantly single-
harmonic, validating the applicability of first-harmonic
balance for engineering-level analysis " %I,

Overall, the results emphasize that mild nonlinear stiffness
should not be dismissed as a secondary effect, particularly
in precision mechanical systems, lightweight structures, and
components operating close to resonance. Incorporating
nonlinear stiffness terms into simplified SDOF models
provides a more realistic and reliable basis for vibration
prediction, design assessment, and dynamic safety
evaluation [6- 1. 151,

Conclusion

This research demonstrates that even mild nonlinear
stiffness can exert a decisive influence on the dynamic
response of single-degree-of-freedom systems, particularly
in the vicinity of resonance where engineering components
are most vulnerable to excessive vibration. The observed
amplitude-dependent resonance shift confirms that linear
vibration models, while mathematically convenient, may
lead to inaccurate prediction of critical frequencies and
response amplitudes under realistic excitation conditions.
The strong correlation between peak frequency and squared
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response amplitude underscores the physical relevance of
nonlinear backbone behavior in practical systems and
highlights the need to treat stiffness nonlinearity as an
inherent property rather than an exception. From an
application perspective, these findings suggest that
designers and analysts should incorporate nonlinear stiffness
effects during early-stage modeling, especially for
lightweight structures, compliant mechanisms, rotating
machinery, and components subjected to variable dynamic
loading. Practical implementation may include adopting
nonlinear reduced-order models for preliminary design
screening, adjusting operational frequency ranges to account
for amplitude-induced detuning, and introducing sufficient
damping to suppress abrupt resonance shifts. In vibration
isolation and fatigue-sensitive systems, conservative design
margins should be established by considering nonlinear
response envelopes rather than linear resonance peaks alone.
Furthermore, experimental modal testing protocols should
be adapted to include amplitude-dependent frequency
identification so that in-service dynamic characteristics are
accurately captured. For control and monitoring
applications, real-time tracking of response amplitude can
be used as an indirect indicator of resonance migration,
enabling adaptive control or preventive shutdown strategies.
By integrating these practical measures with simplified
nonlinear modeling approaches, engineers can significantly
improve prediction reliability, operational safety, and long-
term durability of dynamically loaded systems.
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