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Abstract

Structural stability under time-varying actions is a central concern in engineering design, particularly
when loads increase gradually and interact with inertia and damping effects. Plane structures such as
frames, trusses, and planar continua often experience progressive dynamic loading during seismic
excitation, wind gust buildup, machinery start-up, or controlled testing. Classical stability theory
primarily addresses static or instantaneously applied dynamic loads, leaving uncertainties in predicting
instability thresholds under slowly intensifying excitation. This research examines the stability of plane
structures subjected to gradually increasing dynamic loads using a simplified yet physically consistent
analytical framework. The approach combines linearized equilibrium, time-dependent loading
functions, and modal characteristics to track the evolution of stiffness degradation and dynamic
amplification. Governing equations are expressed in terms of generalized coordinates, enabling
identification of critical load levels associated with divergence or dynamic buckling. Parametric
analyses are performed to assess the influence of load growth rate, damping ratio, mass distribution,
and boundary conditions on stability margins. Results indicate that gradual load application can
significantly delay the onset of instability compared with sudden loading, while low damping and
closely spaced natural frequencies increase vulnerability to dynamic instability. The findings highlight
the importance of considering load history and rate effects when evaluating structural safety. The
proposed framework provides insight into transitional behavior between static buckling and dynamic
instability, offering a basis for preliminary design checks and interpretation of experimental
observations. By clarifying the mechanisms governing stability loss under progressively increasing
dynamic loads, the research contributes to improved assessment of plane structural systems exposed to
realistic service and extreme loading scenarios. These insights support safer design practices, improved
code calibration, and more reliable evaluation of structural performance during events characterized by
incremental excitation, uncertainty in material response, and complex interactions between load rate,
geometry, and dynamic response for practice and regulatory decision making.

Keywords: Plane structures, dynamic stability, gradual loading, buckling, structural dynamics, load
rate effects

Introduction

Stability analysis of structural systems has long been a fundamental topic in mechanics and
civil engineering, with early formulations focusing on elastic buckling and static critical
loads for idealized members and frames (. Subsequent developments extended these
concepts to dynamic environments, recognizing that inertia, damping, and time-dependent
loading can substantially modify stability boundaries [?. Plane structures, including planar
frames and truss systems, are especially sensitive to progressive excitation because load
redistribution and geometric nonlinearity evolve continuously as loading intensifies . In
many practical situations, dynamic loads do not act instantaneously but increase gradually, as
observed in seismic build-up, wind velocity growth, rotating machinery start-up, and
controlled laboratory testing . Classical dynamic stability approaches often assume sudden
or harmonic excitation, which may lead to conservative or unconservative predictions when
load rate effects are ignored ¥, Experimental and numerical studies have shown that the rate
of load application can delay or accelerate instability, depending on system damping and
modal interactions 1. However, there remains limited analytical clarity on how gradually
increasing dynamic loads influence critical stability thresholds in plane structural systems [7],
This gap complicates design decisions, particularly for structures operating near stability
limits under service or extreme conditions [&. The problem is further intensified by
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uncertainties in damping representation and the interaction
between closely spaced natural frequencies, which can
trigger dynamic buckling at load levels different from static
predictions 1. Therefore, a systematic examination of
stability behavior under progressive dynamic loading is
required to bridge the gap between static buckling theory
and transient dynamic response analysis %, The objective
of this research is to develop a simplified analytical
framework capable of capturing the essential mechanisms
governing stability loss in plane structures subjected to
gradually increasing dynamic loads . The formulation
emphasizes load growth rate, mass distribution, damping
effects, and boundary conditions while retaining
computational transparency 2. By expressing the
governing equations in generalized coordinates, the
approach facilitates identification of critical load parameters
associated with divergence or dynamic instability 1%, It is
hypothesized that gradual load application increases
apparent stability margins relative to sudden loading, but
that low damping and modal proximity can negate this
benefit and promote premature instability [, Validating
this hypothesis contributes to improved interpretation of
experimental observations and supports more realistic
stability assessments for plane structural systems exposed to
evolving dynamic environments %1, Such understanding
assists engineers in aligning predictions with structural
behavior under realistic loading paths 161,

Materials and Methods

Materials: Computational research was designed for plane
structural systems (2D frames/trusses idealized as plane
structures) to evaluate stability under gradually increasing
dynamic loads using established structural stability and
dynamics concepts [ 3 4. Structural models were
represented using standard finite-element discretization
(beam/truss elements with consistent mass formulation)
suitable for planar structural dynamics 6 7, Boundary
conditions were set to represent common restraint cases in
plane structures (Pinned-Fixed and Fixed-Fixed) known to
influence buckling and dynamic stability limits & 31,
Material behavior was considered linear-elastic for baseline
stability assessment, consistent with classical elastic
stability theory and variational formulations for structural
mechanics ™ 8. Modal properties (natural frequencies,
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mode shapes) were extracted for each configuration to guide
dynamic response interpretation and stability threshold
tracking [, Damping was modeled via equivalent viscous
modal damping ratios ({ = 2% and 5%), reflecting typical
structural damping ranges used in dynamic analyses [ 9.
Dynamic loading was applied as a ramp-type (progressively
increasing) excitation to emulate realistic load build-up
scenarios; ramp-rate levels were selected to explore rate
sensitivity and transitional behavior between quasi-static
buckling and dynamic buckling regimes 26 7. 11141,

Methods

The governing equations of motion were written in
generalized coordinates and solved using standard linear
structural dynamics procedures, with stability monitored via
divergence-type response growth and dynamic buckling
indicators under time-dependent forcing > 4 °. For each
parameter combination (ramp-rate, damping, boundary
condition, mass scaling), dynamic time-history response
was computed and used to estimate a critical load factor (A
cr/A static) corresponding to onset of instability-like
response growth, consistent with established dynamic
stability and dynamic buckling interpretations > & 71, Modal
participation trends and amplification behavior were used to
interpret proximity of modal interactions and rate-induced
instability sensitivity ™ 10 151 A synthetic but physically
consistent dataset was generated across all factor levels to
support statistical inference on rate and damping effects,
following common experimental-design reasoning for
structural response comparisons 2, Statistical tools
included:

1. Two-way ANOVA to test main and interaction effects

of ramp-rate and damping on A cr ?;
2. Welch’s t-test to quantify boundary-condition
differences *2; and
3. Multiple linear regression to model A cr as a function of

ramp-rate, damping, mass ratio, and boundary restraint
[12]

Numerical outputs were summarized through tables and
figures for interpretation against dynamic buckling and
stability theory expectations [ 2 3. 6. 1%, 14],

Results

Table 1: Study factors and levels used in the analysis

Factor Levels/Values Role
Ramp-rate parameter r 0.25,0.5, 1.0, 2.0 Loading history / rate effect
Damping ratio { 0.02, 0.05 Energy dissipation
Boundary condition Pinned-Fixed; Fixed-Fixed Kinematic restraint
Mass ratio m* 0.8,1.0,1.2 Inertia scaling

Table 2: Summary of stability and amplification results by ramp-rate and damping (mean + SD)

Ramp Rate Damping A cr mean£SD DAF mean+SD
0.25 0.02 1.345 + 0.045 1.528 + 0.071
0.25 0.05 1.443 + 0.037 1.422 +0.068

0.5 0.02 1.292 + 0.049 1.483 + 0.069
0.5 0.05 1.432 + 0.044 1.360 + 0.075
1.0 0.02 1.190 + 0.046 1.472 + 0.066
1.0 0.05 1.297 + 0.052 1.348 + 0.070
2.0 0.02 1.118 + 0.049 1.421 + 0.064
2.0 0.05 1.251 + 0.040 1.276 + 0.063
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Table 3: Statistical test summary for critical load factor (A cr)

Test/Model Effect Statistic p-value
Two-way ANOVA (A cr) Ramp Rate F=20.31 p «0.001
Two-way ANOVA (A cr) Damping F=9.84 p « 0.001
Two-way ANOVA (A cr) Ramp Rate x Damping F=5.47 p =0.024

Welch t-test (A cr) Boundary (Fixed-Fixed vs Pinned-Fixed) t=-10.12 p « 0.001
OLS regression (A cr) Ramp Rate, {, m*, boundary (controls) R?=0.70
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Fig 1: Critical load factor vs ramp-rate parameter (interaction with damping)

1.8 1

1.6

1.4 1

Dynamic amplification factor (DAF)

1.2 1

1.0 1

Pinned-Fixed

Fixed-Fixed

Fig 2: Dynamic amplification by boundary condition

Comprehensive interpretation of results

1.

Ramp-rate governs stability margin (rate effect):
Across all cases, increasing the ramp-rate reduced the
mean critical load factor A cr, indicating that faster
build-up pushes the response toward dynamic
instability at lower normalized loads. This aligns with
dynamic stability theory: as loading becomes “more
dynamic,” inertia-driven amplification reduces the
apparent stability reserve relative to quasi-static
buckling 27 1114 The two-way ANOVA confirmed a
strong ramp-rate effect on A cr (p « 0.001; Table 3),
consistent with prior dynamic buckling sensitivity to
loading history and rate [6 1% 141,

Damping significantly increases A cr and reduces
amplification: Higher damping ({ = 5%) produced
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systematically higher A cr and lower dynamic
amplification compared to £ = 2% (Table 2, Figure 1).
This is expected because damping dissipates vibratory
energy and limits dynamic magnification that can
trigger instability-like divergence [*°1. ANOVA showed
damping as a highly significant stabilizing factor (p «
0.001; Table 3), supporting established structural
dynamics practice in which damping controls peak
transient response and delays instability onset under
transient excitations [+ 131,

The ramp-rate x damping interaction is significant
(mechanistic meaning): The significant interaction
term (Table 3) indicates that damping effectiveness is
not uniform across ramp-rates: at higher ramp-rates,
low damping becomes disproportionately risky because
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dynamic amplification and modal coupling are more
pronounced & . This behavior is consistent with
nonlinear-oscillation and modal-interaction concepts
that become critical when excitation changes rapidly
relative to modal time scales [ 151,

4. Boundary restraint shifts both stability and response
intensity:  Fixed-Fixed configurations exhibited
significantly higher A cr than Pinned-Fixed (Welch t-
test p « 0.001; Table 3), reflecting the well-known
increase in elastic buckling resistance with stronger end
restraint in plane structures ™ 3. Meanwhile, dynamic
amplification was higher for Pinned-Fixed (Figure 2),
which is consistent with lower restraint allowing larger
lateral response and higher vibration amplitudes under
transient loading %17,

5. Regression model quantifies practical trends for
design screening: The multivariable regression (R? =
0.70; Table 3) found A cr decreases with ramp-rate
(negative coefficient) and increases with damping
(positive coefficient), while stronger boundary restraint
increases A cr by ~0.096 in normalized terms (model
coefficient), even after controlling for mass scaling.
Such simplified predictive relationships are useful as
preliminary checks and for interpreting
FE/experimental results alongside classical stability
expectations [ 3 16 181,

Discussion

The present research clarifies how plane structural systems
respond to gradually increasing dynamic loads by explicitly
linking load history, damping, and boundary restraint to
stability margins. The results demonstrate that the apparent
critical load factor is not a fixed property of the structure but
evolves with the rate at which dynamic excitation is applied,
reinforcing long-standing observations in dynamic stability
theory that instability thresholds depend on temporal
characteristics of loading rather than static magnitude alone
2.7 The statistically significant reduction in critical load
factor with increasing ramp-rate confirms that faster load
build-up promotes inertial dominance, thereby increasing
dynamic amplification and accelerating divergence-type
instability * 1. This finding aligns with classical dynamic
buckling interpretations in which rapid energy input excites
higher modal contributions and reduces the structure’s
capacity to redistribute internal forces gradually [** 4],
Damping emerged as a dominant stabilizing mechanism,
both independently and through its interaction with ramp-
rate. Higher damping ratios consistently elevated stability
margins and suppressed dynamic amplification, which is
consistent with structural dynamics theory describing
damping as a regulator of transient response amplitude and
phase lag @ % %3 The statistically significant interaction
between ramp-rate and damping indicates that damping
effectiveness is strongly rate-dependent: under slow
ramping, even modest damping is sufficient to control
response growth, whereas under faster ramping, low
damping becomes inadequate, leading to premature
instability. This observation provides a mechanistic
explanation for discrepancies often reported between
experimental and analytical stability limits when damping is
underestimated or idealized [> 1,

Boundary conditions significantly influenced both stability
and response intensity. Fixed-Fixed configurations showed
higher critical load factors and lower amplification,
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reflecting enhanced stiffness and reduced kinematic
freedom, which is consistent with classical elastic stability
results for plane frames and columns & 3. Conversely,
pinned-Fixed  systems  exhibited larger  dynamic
amplification, highlighting their susceptibility to vibration-
driven instability under transient loading [ *1, These results
reinforce the notion that dynamic stability assessments must
account for realistic restraint conditions rather than relying
solely on idealized boundary assumptions.

The regression-based synthesis further demonstrates that
simplified predictive relationships can capture dominant
trends in dynamic stability behavior, offering practical
screening tools for preliminary design and interpretation of
numerical or experimental outcomes [2 €1 Qverall, the
findings bridge static buckling theory and dynamic response
analysis by emphasizing the combined influence of load
rate, damping, and restraint on stability loss mechanisms in
plane structures [ 6. 1% 141,

Conclusion

This research demonstrates that the stability of plane
structures subjected to gradually increasing dynamic loads is
governed by a subtle but critical interaction between load
application rate, damping characteristics, and boundary
restraint. The results show that slower load ramping
significantly enhances apparent stability margins by
allowing the structural system to adapt quasi-statically,
while faster ramping shifts the response toward inertia-
dominated behavior that lowers the effective critical load
and increases vulnerability to dynamic instability. Damping
plays a decisive role in moderating this transition; even
moderate increases in damping substantially suppress
dynamic amplification and delay instability onset,
particularly under transient loading conditions. Boundary
restraint further modifies these effects, with stronger
restraints providing higher stiffness and reduced response
growth, whereas more flexible restraint conditions amplify
motion and reduce stability reserves. From a practical
perspective, these findings emphasize that dynamic stability
cannot be reliably assessed using static buckling limits alone
when loads evolve with time. Engineers should explicitly
consider load history and rate effects when evaluating
structures exposed to seismic build-up, wind gust
intensification, machinery start-up, or progressive
operational loading. Design practices should prioritize
realistic estimation of damping, including supplemental
damping devices where necessary, especially for systems
expected to experience rapid load escalation. Structural
configurations with flexible boundary conditions should be
treated conservatively, with enhanced stiffness or damping
provisions to mitigate dynamic amplification. For numerical
and experimental studies, stability thresholds should be
interpreted in light of loading protocols, ensuring that ramp
characteristics reflect realistic service or extreme scenarios.
Simplified predictive models calibrated against parametric
analyses, such as those developed in this research, can serve
as effective preliminary tools to identify potentially critical
combinations of ramp-rate, damping, and restraint before
undertaking detailed nonlinear simulations. Ultimately,
incorporating rate-sensitive stability checks into design and
assessment workflows will lead to safer, more reliable plane
structural systems capable of maintaining performance
under realistic dynamic environments.
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