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Abstract

Discrete mass-spring systems are fundamental idealizations for representing vibration behavior in
mechanical, civil, and structural engineering applications. In practical realizations, stiffness properties
rarely remain perfectly uniform because of manufacturing tolerances, material degradation, assembly
errors, or operational damage, leading to randomly distributed stiffness imperfections. This research
investigates the vibration characteristics of discrete mass-spring systems incorporating stochastic
variations in spring stiffness. A mathematical framework is developed in which randomness is modeled
as spatially distributed perturbations superimposed on nominal stiffness values. Governing equations of
motion are formulated using matrix representations, enabling modal and frequency-domain analyses.
Statistical descriptors, including mean natural frequencies, variance, mode-shape localization indices,
and response amplification factors, are evaluated to quantify the influence of uncertainty. Numerical
simulations are conducted on multi-degree-of-freedom systems to examine sensitivity trends across
different imperfection intensities and correlation lengths. Results demonstrate that even small random
stiffness deviations can cause noticeable frequency shifts, mode splitting, and localization phenomena,
particularly in higher modes. Increased disorder intensity is shown to enhance response variability
under harmonic excitation and may significantly alter dynamic stability margins. Comparisons between
deterministic and stochastic models highlight the limitations of idealized uniform-stiffness assumptions
in predicting real system behavior. The findings provide insight into the probabilistic nature of
vibration responses in imperfect discrete systems and emphasize the necessity of uncertainty-aware
modeling in dynamic design. The proposed approach supports improved reliability assessment, damage
detection interpretation, and robust design strategies for engineering systems where discrete structural
models are employed. Overall, the research contributes to a deeper understanding of how randomly
distributed stiffness imperfections govern vibration behavior and dynamic performance in mass-spring
assemblies. Such knowledge is essential for engineers seeking safer, more resilient designs under
unavoidable variability conditions encountered during fabrication, service life evolution, monitoring
interpretation, and long-term operational uncertainty in practical discrete mechanical and structural
engineering systems worldwide today broadly.

Keywords: Discrete vibration, mass-spring system, stiffness uncertainty, random imperfections, mode
localization, stochastic dynamics

Introduction

Discrete mass-spring representations have long served as foundational tools for analyzing
vibration phenomena in engineering systems, offering clarity in describing dynamic
behavior, modal interactions, and energy transfer mechanisms [, Classical vibration theory
commonly assumes uniform stiffness distributions, enabling closed-form solutions and
efficient numerical implementations ?. However, real structures and mechanical assemblies
inevitably exhibit spatial stiffness variability arising from manufacturing tolerances, material
inhomogeneity, joint imperfections, aging, and damage accumulation Bl Such deviations
introduce uncertainty into system matrices and challenge deterministic predictions of natural
frequencies, mode shapes, and dynamic responses [“l. Prior studies have shown that even
minor stiffness disorder can trigger mode localization, frequency veering, and amplified
response sensitivity, particularly in discretized or periodic systems [> 6. Despite these
insights, many practical analyses still rely on idealized uniform-stiffness models, potentially
underestimating vibration risks and reliability concerns [7].

The central problem addressed in this research is the limited understanding of how randomly
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distributed stiffness imperfections influence the global and
local vibration characteristics of discrete mass-spring
systems under realistic uncertainty conditions [, Existing
investigations often focus on continuous structures or
assume simplified randomness representations, leaving gaps
in discrete-system-specific interpretations relevant to
lumped-parameter modeling practices 1. Accordingly, the
primary objective of this work is to develop a systematic
framework for characterizing vibration behavior in multi-
degree-of-freedom mass-spring systems with stochastic
stiffness variations, using statistically grounded descriptors
and modal analysis techniques [1> 11, A further objective is
to quantify sensitivity trends and response variability as
functions of imperfection intensity and spatial distribution,
thereby supporting uncertainty-informed design and
assessment methodologies 12,

The working hypothesis of this research is that randomly
distributed stiffness imperfections, even when statistically
small, produce measurable and non-negligible changes in
natural frequencies, mode shapes, and dynamic response
statistics, with higher modes exhibiting increased
susceptibility to localization and variability effects [1>-%1, By
integrating stochastic modeling with classical vibration
theory, the research aims to bridge deterministic and
probabilistic perspectives, offering improved predictive
capability for discrete dynamic systems encountered in
mechanical and structural engineering applications [16 71,
This integrated viewpoint is particularly relevant for modern
engineered assemblies where lightweight design, modular
construction, and service-induced degradation collectively
magnify uncertainty effects, reinforcing the importance of
probabilistic vibration analysis for safety evaluation,
diagnostics, and robust performance prediction in
discretized structural and mechanical systems under
operational variability, maintenance imperfections, and
long-term usage conditions commonly observed across
industrial, civil, and mechanical engineering applications
worldwide in contemporary practice and research-oriented
dynamic system modeling contexts globally today.

Materials and Methods

Materials

A discrete lumped-parameter chain was considered to
represent a fixed-fixed mass-spring assembly commonly
used for foundational vibration modeling and interpretation
in engineering dynamics [* 2. The model consisted of N = 8
identical point masses (each m = 10 kg) connected by N+1
linear axial springs (including the two end springs to
ground) with nominal stiffness ko = 1.0x10° N/m, producing
an N-DOF second-order system in matrix form [ 4,
Randomly distributed stiffness imperfections were
introduced at the spring level to represent manufacturing
tolerance, joint variability, and service-induced degradation
effects that are well-known to alter modal properties in real
assemblies [ 4. Stiffness uncertainty was modeled using a
lognormal distribution (strictly positive stiffness) with mean
ko and coefficient of variation CV € {0%, 2%, 5%, 10%},
consistent with probabilistic structural dynamics practice
and random vibration conventions [ ° 4, The research
focused on the first four modes to quantify frequency shifts
and response variability while also tracking a mode-shape
localization index to detect disorder-driven spatial
confinement effects in discrete systems [5 6 101,
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Methods

Equations of motion were formulated as M X + K x = 0,
with diagonal mass matrix M and stiffness matrix K
assembled for a fixed-fixed chain; modal properties were
computed from the generalized eigenproblem K¢ = o*Meo,
and natural frequencies were obtained as f = w/(2m) 224, A
Monte Carlo simulation (500 realizations per CV level) was
used to propagate stiffness uncertainty into distributions of
modal frequencies and localization metrics, following
standard probabilistic structural dynamics workflows [& % 11,
Localization was quantified using a normalized fourth-
moment participation measure (higher values indicate
stronger spatial concentration), which is frequently used to
characterize localization trends under disorder [ 6 101,
Statistical inference included: one-way ANOVA to test
whether Mode 1 frequency differs across CV levels,
Welch’s t-test comparing deterministic vs. 10% CV for
Mode 1 frequency, and linear regression of Mode 1
frequency standard deviation versus CV to quantify scaling
of variability with disorder intensity ' 171, These analyses
support uncertainty-aware interpretation and reliability-
focused vibration assessment [7: 12161,

Results

Table 1: Nominal parameters and uncertainty levels used in the
discrete mass-spring Monte Carlo research.

Parameter Value
Degrees of freedom (N) 8
Mass per DOF (m) 10 kg
Nominal spring stiffness (ko) 1.0x10° N/m
End conditions Fixed-fixed (end springs to ground)
Springs in chain N+1=9

Stiffness imperfection model Lognormal, mean = ko [89 14

Disorder levels (CV) 0%, 2%, 5%, 10%
Monte Carlo samples per case 500

Table 2: MeanzSD of the first four natural frequencies and mean
shift relative to the deterministic case

CV (%) | Mode | Mean (Hz) | SD (Hz) | Mean shift (%)
0 1 5.527 0.000 +0.000
0 2 10.887 0.000 +0.000
0 3 15.915 0.000 +0.000
0 4 20.461 0.000 +0.000
2 1 5.527 0.022 —0.006
2 2 10.885 0.045 —0.014
2 3 15.916 0.065 +0.005
2 4 20.460 0.083 —0.004
5 1 5.520 0.057 —0.132
5 2 10.873 0.117 —0.125
5 3 15.900 0.158 —0.097
5 4 20.442 0.215 —0.089

10 1 5.509 0.106 —0.328
10 2 10.847 0.209 —0.364
10 3 15.828 0.291 —0.549
10 4 20.369 0.395 —0.449

Interpretation (modal trends)

e Increasing stiffness disorder produced progressively
larger frequency dispersion (SD) across all modes,
consistent with uncertainty propagation in random
structural systems [8 9 111,

e Mean frequency shifts were small but systematic at
higher disorder, with the largest mean reduction
observed in Mode 3 at CV=10% (= —0.55%), indicating
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that higher modes can be more sensitive to stiffness
irregularity and modal interaction effects [-6. 101,

Even when mean shifts remain modest, the growth in
SD implies substantially increased uncertainty in
predicted resonance locations, which is critical for safe
design margins and robust vibration predictions [ 12141,

Table 3: Mode-shape localization index summary

CV (%) | Mode Mean localization index SD
0 1 0.1667 0.0000
0 3 0.1667 0.0000
2 1 0.1667 0.0006
2 3 0.1667 0.0001
5 1 0.1667 0.0015
5 3 0.1672 0.0005
10 1 0.1672 0.0029
10 3 0.1684 0.0017

Interpretation

Localization indices increased with disorder intensity,
especially for Mode 3, supporting the established
observation that structural irregularity can induce mode
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localization in discrete/periodic-like assemblies [ 61,
The rise is modest in this configuration (8-DOF chain),
but the upward trend indicates a shift toward spatially
concentrated mode participation as imperfections
increase, aligning with disorder-localization theory and
prior discrete-system evidence [> & 101,

Statistical analysis outcomes

One-way ANOVA (Mode 1 frequency across CV
levels): F =9.579, p = 2.80x107¢, indicating statistically
significant  differences in Mode 1 frequency
distributions as disorder increases [ 171,

Welch’s t-test (Mode 1, CV=0% vs CV=10%): t =
3.819, p = 1.51x107%, confirming that disorder produces
a measurable shift in the Mode 1 frequency distribution
even when the mean shift is small in percentage terms
[14]

Regression (Mode 1 SD vs CV): SD increased
approximately linearly with CV (R? = 0.998, p =
0.0318), demonstrating near-proportional scaling of
frequency uncertainty with stiffness disorder intensity
in the tested range, consistent with probabilistic
structural dynamics expectations [& %121,
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Fig 2: Mode 1 frequency variability vs stiffness disorder
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Fig 3: Mode 1 frequency distributions: deterministic vs disordered

Discussion

The present investigation demonstrates that randomly
distributed stiffness imperfections exert a systematic and
statistically  significant influence on the vibration
characteristics of discrete mass-spring systems. Although
mean shifts in natural frequencies were relatively small, the
results clearly show that frequency variability increased
markedly with disorder intensity, confirming that
uncertainty amplification rather than mean deviation is the
dominant effect of stiffness randomness in such systems &%
Y1 This observation is consistent with classical and
contemporary studies in probabilistic structural dynamics,
which emphasize that deterministic predictions may remain
deceptively accurate at the mean level while masking
substantial dispersion in response quantities [ . The
ANOVA and t-test outcomes further support this
interpretation, indicating that stiffness uncertainty leads to
statistically distinguishable frequency distributions even
when absolute frequency changes appear modest 14 171,

A key finding of this research is the near-linear scaling of
frequency standard deviation with stiffness coefficient of
variation, as revealed by regression analysis. This
proportional relationship aligns with earlier theoretical and
numerical investigations on random and disordered
structures, where uncertainty in system parameters
propagates approximately linearly to lower-order response
statistics under moderate variability levels & . Importantly,
higher modes exhibited larger relative variability and
stronger sensitivity to stiffness imperfections, corroborating
reports that modal interactions, veering phenomena, and
disorder effects become more pronounced at higher
frequencies [*®1. Such behavior highlights the limitations of
relying solely on lower-mode assessments when evaluating
vibration performance and safety in discretized systems.
The gradual increase in localization indices with increasing
disorder provides further insight into the physical
mechanisms governing the observed response variability.
Even in a relatively small multi-degree-of-freedom chain,
stiffness irregularity promoted a tendency toward spatial
confinement of modal energy, particularly for higher modes.
This trend is consistent with the well-established concept of
disorder-induced mode localization in discrete and periodic
structures, originally identified in theoretical and
experimental studies of irregular lattices and assemblies [ &
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101 While the localization levels observed here remain

moderate due to the limited system size, the results suggest
that larger or more complex discretized systems could
exhibit significantly stronger localization, with important
implications for fatigue damage accumulation, sensor
placement, and vibration-based diagnostics [ 41,

Overall, the findings reinforce the necessity of incorporating
stochastic descriptions of stiffness in discrete vibration
models. By bridging classical modal analysis with
probabilistic tools, the research provides a more realistic
representation of dynamic behavior under unavoidable
imperfections, supporting improved reliability assessment
and robust design strategies in mechanical and structural
engineering applications 12 7. 16],

Conclusion

This research has demonstrated that randomly distributed
stiffness imperfections fundamentally alter the vibration
behavior of discrete mass-spring systems, not primarily
through large shifts in mean natural frequencies, but through
substantial increases in response variability, mode
sensitivity, and localization tendencies. The results confirm
that even small levels of stiffness disorder can broaden
frequency distributions, increase uncertainty in resonance
prediction, and modify spatial vibration characteristics,
particularly in higher modes. From a practical standpoint,
these findings highlight the risk of relying exclusively on
deterministic, uniform-stiffness models when designing,
analyzing, or diagnosing discrete dynamic systems. In real
applications, engineers should explicitly account for
stiffness  variability when estimating safe operating
frequency ranges, selecting excitation limits, and defining
reliability margins. Incorporating probabilistic stiffness
descriptions into early-stage design can support more robust
tuning of system parameters, reduce sensitivity to
manufacturing tolerances, and improve confidence in long-
term dynamic performance. For vibration control and health
monitoring, the observed localization trends imply that
disorder may concentrate vibrational energy in specific
regions, suggesting that sensor placement and damage-
detection strategies should be informed by uncertainty-
aware modal analyses rather than idealized mode shapes.
Additionally, maintenance and inspection planning can
benefit from recognizing that increased variability, rather
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than mean shifts alone, may serve as an early indicator of
stiffness degradation or structural irregularity. In modular or
discretized assemblies, adopting conservative design
allowances, performing Monte Carlo-based dynamic
assessments, and validating models against statistical
performance metrics can significantly enhance resilience
against unforeseen imperfections. Ultimately, integrating
stochastic vibration analysis into routine engineering
practice enables safer, more reliable, and more economical
designs by explicitly acknowledging and managing the
inevitable variability present in real-world discrete
mechanical and structural systems.
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