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Abstract 
Effect of curing temperatures on the hydration, physical and mechanical properties of the cement pastes 

incorporated 20% ceramic sanitary ware powder waste (CSPW) was investigated. Results showed that 

the curing temperatures initiated and activated the hydration process of the cement pastes. Total 

porosity was decreased till 60 ℃. This was reflected positively on water absorption and bulk density. 

The same trend was displayed with mechanical properties. The specimens of cement pastes that were 

hydrated at curing temperature 60 ℃ recorded the best results, where the total porosity (15.13%) and 

water absorption (14.97%) are the lowest, while the bulk density (2.0903 g/cm3) was the highest. Also, 

the flexural and compressive strengths achieved the highest values as 46.83 and 73.42 MPa, 

respectively. Suddenly, all the characteristic properties were slightly adversely affected with any 

further increase of curing temperature › 60 ℃. Consequently, the optimum water curing temperature is 

60 ℃, and any higher curing temperature over than 60 ℃ must be avoided. 
 

Keywords: Cement, sanitary ware powder waste, temperature, hydration, water absorption, density, 

porosity, strength 

 

Introduction 

Manufacturing process of Ordinary Portland cement (OPC) produces large emission amounts 

of CO2. Emission of CO2 is due to the decomposition of limestone during firing inside the 

rotary kiln at ≥ 1400 ℃, into CaO and CO2, where about 60% of CO2 emissions were 

coming. Cement industry is responsible for about 8% of the total CO2 emissions worldwide 
[1-2]. This created the most serious environmental problem as global warming. So, it is hoped 

to reduce this rate of CO2 emissions as possible and hence, alternative materials to cement 

are needed. Blended cements, in which a portion of the cement is replaced by industrial 

wastes or by-products, i.e. granulated blast furnace slag (GbfS), fly ash (FA), silica fume 

(SF), agro/wastes as rice husk ash (RHA), sugar cane bagasse ash (SCBA), wheat strew ash 

(SWA), sun flower ash (SFA), saw dust (SD) and many other agricultural ashes as well as 

concrete waste [3-20]. These eco-friendly binders are very important because it can produce 

very safe cementing materials to environment that linked to conventional Portland cement. 

In recent years, the incorporation of ceramic powder wastes (CPW) in OPC as a pozzolanic 

material has gained popularity because the use of CPW can improve the properties of 

cementing materials and reduce the total embodied carbon. Several studies [21-38] have shown 

that the incorporation of CPW in cementing materials has a positive effect on the properties 

of the hardened cement pastes, concretes and mortars, as heat of hydration, density, 

absorption, porosity, mechanical properties, durability and resistance to firing. It is well 

known that the variation in temperature between day and night, and also between seasons 

have a vital effect on the rate of hydration of the major phases of the cement [24-30]. 

Therefore, the influence of curing temperatures on hydration of cementing materials was 

investigated. It could be occurred during the precast process where the high temperatures 

accelerated the hardening of the concrete and its activation energy [37-39]. To activate this 

energy, several techniques could be used as thermal activation [40], mechanical activation by 

increasing the specific surface area [11-13] and chemical activation by adding activators as Ca 

(OH)2 and Na2SO4 [41]. Though the positive effect of pozzolanic materials on the mechanical 

properties has already been demonstrated at 20 °C [18, 28-30], the effect of temperature on the 

hydration mechanism, microstructure and resistance to the compression  
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of cement pastes is rarely discussed. Effect of curing 

temperature on the hydration process of the main phases of 

clinker as alite (C3S), belite (β-C2S), ferrite (C4AF) and 

aluminate (C3A)) for the pure cement [42] and also for 

blended cements [43]. Hydration of these phases at 

temperatures of 10-60 °C was evaluated. During the early 

ages, the compressive strength of the various mixes was 

directly proportional to the curing temperature, where the 

highest compressive strength was obtained after one year 

when were cured at low temperatures (10-20 °C). This 

inversion is due to the deposition of more compact 

hydration products around the grains of the hydrates which 

slows down the diffusion of the reagents. So, the hydration 

was delayed [44].  

High temperatures caused the formation of large pores and 

the increase of the accumulated volume which has a 

negative effect on the mechanical properties of the 

specimen. The great reactivity of pozzolanic materials with 

Ca (OH)2 makes it a good replacing material for cement due 

to its pozzolanicity [13, 45-48]. It was reported that the presence 

of certain activators as lime, chlorides, sulphates, etc. in the 

pozzolanic reactions can modify the kinetics of the 

pozzolanic reactions as well as the development of hydrates 

crystals [26, 49-53]. Accordingly, the effect of curing 

temperatures (25, 30, 40, 50 and 60 ℃) on the hydration of 

Portland cement pastes incorporated 20 wt. % CSPW that 

was hydrated at ambient temperature (T0) was evaluated. To 

assess the effect of curing temperature, the heat of 

hydration, absorption, porosity, density and mechanical 

characteristics are evaluated. The obtained results are 

confirmed with fourier transform infrared spectra (FT-IR) as 

well as scanning electron microscopy (SEM) were 

conducted to characterize the hydration and microstructure 

of the cement pastes. 

 

2. Experimental 

2.1. Raw materials 

The used raw materials in the current study are ordinary 

Portland cement (OPC) and ceramic sanitary ware waste 

(CSW). The OPC sample (OPC Type I- CEM I 42.5 R) was 

delivered from Sakkara cement factory, Giza, Egypt having 

the surface area or fineness of 3500 cm2/g. T was measured 

by Air Permeability Apparatus [54]. 

The broken pieces of sanitary wares were crushed using a 

suitable crusher. These crushed ceramic wastes were then let 

to grind in a ball mill for only 60 minutes till pass from a 75 

μm sieve. The resulting powder is called ceramic sanitary 

powder waste (CSPW). The specific gravities of OPC and 

CSPW as measured with a Le Chatelier flask were 3.15 and 

2.73 g/cm3, respectively. The chemical analysis of OPC and 

CSPW using X-ray fluorescence technique (XRF) is shown 

in Table 1. To achieve the pre-established reference 

consistency, it was necessary to add 1% polycarboxylic 

ether as a high reducing water superplasticizer admixture to 

mixing water. Table 2 shows the Mineralogical composition 

of OPC sample, while Table 3 indicates the physical 

properties of the raw materials. 

 
Table 1: Chemical oxide composition of the raw materials, wt. % 

 

Oxides 

Material 
SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O SO3 LOI 

OPC 20.12 5.25 1.29 63.13 1.53 0.55 0.3 2.54 2.64 

CSPW 30.56 8.31 3.68 51.73 3.67 0.02 1.09 0.07 0.71 

 

Table 2: Mineralogical composition of OPC sample, wt. %. 
 

Phase Material C3S β-C2S C3A C4AF 

OPC 46.81 28.43 5.90 12.56 

 
Table 3: Physical properties of the raw materials, wt. % 

 

Properties 

Materials 

Specific 

gravity 

Density, 

g/cm3 

Blaine surface 

area, cm2/g 

OPC 3.15 1445 3500 

CSPW 2.66 1248 5950 

 

2.2. Preparation and methods 

There is one cement batch from OPC and CSPW as 80:20 

which is the optimum batch in a previous study [55] and it 

was considered the control cement batch having the symbol 

T0. Blending process of the various cement blends was done 

in a porcelain ball mill using 2-4 balls for two hours to 

assure the complete homogeneity of the cement blend. 

During casting, 1% polycarboxylic ether as a high reducing 

water superplasticizer admixture was added to mixing water 

which in tuern added to the prepared cement mix so as to 

avoid the agglomeration of the nanoparticles of the used 

CSPW or OPC. It was applied to improve cement 

dispersion. 

The standard water of consistency (WC) of the prepared 

cement mix was directly determined using Vicat Apparatus 

which was 33.11% [56]. Cement pastes were then cast using 

the predetermined water of consistency, moulded into one 

inch cubic stainless steel moulds (2.5 x 2.5 x 2.5 cm3) using 

about 500 g cement mix, vibrated manually for three 

minutes, and then on a mechanical vibrator for another three 

minutes to eliminate all air bubbles. The surface of the 

moulds was smoothed using a suitable spatula. Thereafter, 

the moulds were kept in a humidity chamber for 24 hours at 

95±2 RH and room temperature (22±1 ºC), demoulded in 

the following day and soon immersed in water till 90 days. 

The temperature of curing water was 25, 30, 35, 40, 45, 50, 

55 and 60 ℃. Then, water absorption (WA), bulk density 

(BD) and total porosity (δ) of the cured hardened cement 

pastes were determined [57]. Also, the mechanical properties 

in terms of flexural strength (FS) and compressive strength 

(CS) of the various hardened cement pastes [58, 59] were 

measured. The FS could be carried out using the three point 

adjustments system (Fig. 1).  

 

 
 

Fig 1: Schematic diagram of bending strength, B: Beam or loading 

of rupture, S: Span, W: Width and T: Thickness. 

 

3. Results and Discussions  

3.1. Total porosity 

The total porosity (TP) of the optimum hardened cement 

pastes (T0) incorporating 20 wt. % CSPW hydrated up till 

90 days at the ambient temperature (25 ℃) [55] which was let 

to hydrate at different curing temperatures (30, 35, 40, 45, 

50, 55, 60 and 65 ℃) are shown in Fig. 2. The TP of the 

https://www.mechanicaljournals.com/materials-science
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control (T0) hydrated up to 90 days at 25 ℃ was 17.07%. 

This value was decreased with the increase of water curing 

temperature till 60 ℃, but it suddenly increased with the 

increase of water curing temperature (› 60 ℃). The gradual 

decrease of TP is mainly due to the energy activation effect 

of the higher temperatures [60-61], which initiated, promoted 

and accelerated the hardening. This in turn improved the 

crystal growth of the formed phases [60-63]. This continued 

till 60 ℃, and then TP increased again with any increase of 

curing temperature (› 60 ℃). The increased values of TP 

with higher curing temperature are mainly contributed to 

unsuitable environment for cement phases to hydrate 

normally and also may be the slight break down of the 

formed CSHs which created more and large pores [39-44]. So, 

the higher curing temperature than › 60 ℃ must be 

eliminated, i.e. the optimum curing temperature at which the 

lowest values of TP were achieved is 60 ℃. 

 

 
 

Fig 2: Total porosity of the cement pastes containing 20% CSPW hydrated at various water curing temperatures. 

 

3.2. Water absorption 

Results of water absorption (WA) of the optimum hardened 

cement pastes incorporating 20 wt. % CSPW hydrated up 

till 90 days at the ambient temperature [55] that was 

considered as the control (T0) was subjected to different 

water curing temperatures (25, 30, 35, 40, 45, 50, 55, 60 and 

65 ℃) are illustrated in Fig. 3. The WA of the control 

sample (T0) hydrated up to 90 days at 25 ℃ was 16.89%. 

This value was slightly decreased with increasing of the 

curing temperature but only up to 60 ℃, and then slightly 

increased with any further increase of curing temperature 

(65 ℃). The decrease of WA is firstly attributed to the 

higher compaction effect resulting from the high nanograin-

size particles or fineness of both cement and CSPW which 

reflected positively on the physical properties of the 

hardened cement pastes. This reduced the pore structure of 

the hardened cement pastes. In addition, the activation and 

initiation influence of curing temperature that improved and 

decreased the total porosity which modified the crystal 

growth of the cured phases. This in turn decreased more the 

WA of the hardened cement pastes [61, 64]. But, the little 

increase of WA at › 60 ℃ curing temperature is often due to 

that the higher curing temperature caused the break down or 

slight damage to some CSH phases which led to the 

formation of more pores [55, 59-60]. Hence, the higher curing 

temperature (› 60 ℃) must be avoided due to its adverse 

action. 

 

 
 

Fig 3: Water absorption of the cement pastes containing 20% CSPW hydrated at various water curing temperatures. 
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3.3. Bulk density 

The bulk density (BD) of the optimum hardened cement 

pastes containing 20 wt. % CSPW hydrated up till 90 days 

at the ambient temperature [55] which subjected to different 

curing temperatures (25, 30, 35, 40, 45, 50, 55, 60 and 65 

℃) are represented in Fig. 4. The BD of the optimum 

hardened cement pastes hydrated up to 90 days was 2.0583 

g/cm3. This value was slightly enhanced with curing 

temperature till 60 ℃, and then decreased by further 

increase of curing temperature › 60 ℃. Increase of BD is 

mainly due to the slight energy activation and initiation of 

curing temperatures which accelerated the rate of hydration 

and hardening that modified the microstructure and crystal 

growth of the formed CSHs [39-42, 60-62, 64], i.e. the exposure of 

the hardened cement pastes to curing temperatures 

activated, initiated and also increased the formed CSHs 

which precipitated in the pore volume of the samples. This 

decreased the micropores, improved and enhanced the BD 
[60, 62]. The slight reduction in the BD is due to the lower 

specific gravity of the CSPW and the breakdown some of 

some CSHs [60, 64, 65], the hardened cement pastes with 

CSPW showed both lower water absorption, lower porosity 

and higher bulk density especially up to 60 ℃. The better 

performance of the cement pastes with CSPW is due to the 

combined effect of pozzolanic activity and the filler effect 

of the CSPW, resulting in the refinement of the pores of the 

cement pastes. Therefore, the reduction of water absorption 

and total porosity were resulted. So, the optimum curing 

temperature is 60 ℃ at which the best values of BD were 

achieved, and the higher ones › 60 ℃ must be prevented [39-

44]. 

 

 
 

Fig 4: Bulk density of the cement pastes containing 20% CSPW 

hydrated at various water curing temperatures. 

 

3.4. Flexural strength 

Figure 5 shows flexural strength (FS) of the optimum 

hardened cement pastes incorporating 20 wt. % CSPW 

hydrated up till 90 days at the ambient temperature that was 

considered as the control (T0) [55] was subjected to different 

curing temperatures (25, 30, 35, 40, 45, 50, 55, 60 and 65 

℃) to explore its effect on the hydration process. FS of the 

blank hardened cement pastes was 44.13 MPa. This value 

was improved and enhanced with curing temperatures only 

up to 60 ℃, but then decreased with any further rise of 

curing temperature › 60℃. The increase of FS is mainly due 

to that the heating of curing water activated, initiated and 

promoted the thermal interactions between the different 

ingredients of the samples so that it improved, enhanced and 

modified the formed CSHs. On the other side, the decrease 

of FS is essentially contributed to the decomposition of Ca 

(OH)2 or may be due to the significant dehydration within 

the cement matrix modifying the physical properties and the 

dehydration of both calcium silicate hydrates (CSHs) that 

occurred with high heated curing water [67-70]. This caused 

the weakening of bonds of pastes, which in turn resulted in 

the destruction of micro-structural arrangements in the 

hardened cement pastes. So, the high temperature of curing 

water must be prevented. 

 

 
 

Fig 5: Flexural strength of the cement pastes containing 20% 

CSPW hydrated at various water curing temperatures. 

 

3.5. Compressive strength 

Compressive strength (CS) of the optimum hardened cement 

pastes containing 20 wt. % CSPW hydrated up till 90 days 

at the ambient temperature that was considered as the 

control (T0) [55] was subjected to varying curing 

temperatures (25, 30, 35, 45, 50, 55, 60 and 65 ℃) are 

demonstrated in Fig. 6. CS of the various hardened cement 

pastes was first increased with curing temperatures, but only 

up to 60 ℃, and then decreased gradually by rising the 

curing temperature. Increase of CS is principally due to the 

initiating effect of the heating temperatures that activated, 

promoted and modified the crystal growth structures of the 

formed CSHs [60-64, 67]. Decrease of CS at curing temperature 

› 60 °C may be attributed to the significant dehydration 

within the cement matrix modifying the physical properties 

of the cement pastes. The sharp fall in CS [68] by › 60 °C 

onward could be due to the decomposition of Ca (OH)2 and 

dehydration of both calcium silicate hydrates (CSHs) that 

occurred at temperature beyond 60 °C [60-62, 64]. This often 

caused the break down or at least the weakening of bonds of 

cement pastes. This always caused the destruction of the 

microstructural arrangements in constituents of cement 

pastes [69-72]. 

The sharp decline in CS at 65 °C curing temperature may be 

due to the decomposition of Ca(OH)2 and dehydration of 

both calcium silicate hydrates (CSHs) that took place at 

temperature beyond 60 °C [60, 73]. This always caused the 

breaking down of bonds between particles of cement pastes 

that caused the destruction of the cement pastes. As a result, 

the presence of CSPW in the cement pastes increased the 

resistance of the hardened cement pastes to the high 

temperatures up to 60 ℃. The improved resistance against 

high temperatures with CSPW inclusion can be mainly 

attributed to the decreased amount of Ca (OH)2 which in 

turn lowered its pozzolanic activity with CSPW [68-74]. 

Consequently, the higher curing temperature must be 

avoided

https://www.mechanicaljournals.com/materials-science
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Fig 6: Compressive strength of the cement pastes containing 20% CSPW hydrated at various water curing temperatures. 

 

4. Conclusion 

Total porosity was gradually decreased with water curing 

temperature, i.e. as the temperature of curing water 

increased, the total porosity decreased. This was continued 

up to 60 ℃. This in turn was positively reflected on water 

absorption and bulk density. Any further increase of curing 

temperature (› 60 ℃), the total porosity and also all physical 

properties were slightly affected negatively. Mechanical 

properties in terms of flexural and compressive strengths 

also improved and enhanced, and always achieved the same 

trend as physical properties. Therefore, the optimum water 

curing temperature was 60 ℃, and any more increase of 

curing temperatures › 60 ℃ was reflected adversely on the 

whole characteristics. So, the higher water curing 

temperature is undesirable. It can be recommended that 

during of casting cement pastes, mortars or even concretes, 

the mixing water must be previously heated up to 50-60℃ 

before adding to the cement mixes.  
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