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Abstract 
This paper considered an approximate solution of linear second-order integral equations of Volterra 

and Fredholm types using power series and shifted Chebyshev polynomials as basis functions. In 

addition, shifted Chebyshev Gauss-Lobatto collocation points were chosen to collocate the 

approximate solution and numerical examples were performed on some problems using both power 

series and shifted Chebyshev polynomials for various orders in terms of errors obtained. The two basis 

functions were compared. However, as the table of errors shows shifted Chebyshev polynomials 

outperformed power series in some problems. 
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Introduction 

Integral equations serve as a fundamental tool in mathematical physics, often arising as 

reformulations of problems involving partial differential equations or ordinary differential 

equations. In the absence of analytical solutions or when obtaining them proves excessively 

challenging, numerical simulation has emerged as a powerful approach for modeling 

physical phenomena. Therefore, the study of integral equations and the development of 

efficient numerical methods to solve them are crucial in practical applications. Numerous 

researchers have dedicated their efforts to the numerical solution of Volterra and Fredholm 

integral equations, employing diverse techniques including the least squares method, 

Chebyshev polynomials, scaling function and interpolation method, separation of variables 

method, Hosoya polynomial, Legendre polynomial, hybrid methods, and other innovative 

approaches. This manuscript aims to provide a comprehensive review of the existing 

literature, highlighting the significance of numerical methods for solving integral equations 

in the context of mathematical physics and engineering science. 

In a recent study conducted by Ayinde, James, Ishaq, and Oyedepo (2022) [4], the researchers 

explored the numerical advantages offered by various types of polynomials, including 

Taylor, Chebyshev, Hermite, Legendre, and Laguerre polynomials, in the context of solving 

integral and integro-differential equations (IDEs). Notably, the team successfully utilized 

third kind Chebyshev polynomials to solve high-order integro-differential equations, 

showcasing their efficacy in the field. Shoukrallah and Elghory (2021) [13] also introduced an 

innovative approach for solving second-kind Fredholm integral equations, employing shifted 

Legendre polynomials. Their method revolves around utilizing these polynomials in a matrix 

form to efficiently address the integral equations. 

On the other hand, Ratinan, Ampol, and Phansphitcha (2020) [12] conducted a study focusing 

on the direct and inverse problems associated with one-dimensional time-dependent Volterra 

integro-differential equations. Their investigation specifically dealt with integro-differential 

equations involving two integration terms of the unknown function, both in terms of direct 

problem formulation and inverse problem resolution. In the research conducted by Jacob 

(2020) [8], the focus was on investigating various analytical and numerical approaches for 

tackling the Fredholm integral equation of the second kind. The methods explored included 

degenerated kernel methods, numerical methods, the projection method, the Nystrom 

method, and spectra methods.  
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By studying and analyzing these techniques, the author 

aimed to provide a comprehensive understanding of their 

applications in solving the aforementioned integral equation. 

In a separate study carried out by Nemati (2014) [11], 

Volterra-Fredholm integral equations were addressed, and a 

novel method based on shifted Legendre polynomials was 

introduced for approximating solutions. The unique 

characteristics of shifted Legendre polynomials were 

thoroughly discussed in this context. Furthermore, the 

properties of these polynomials, along with the shifted 

Gauss-Legendre nodes, were effectively utilized to reduce 

the Volterra-Fredholm integral equations to a more 

manageable matrix equation for a streamlined solution 

process. Yousef and Lin (2012) [14] devised a method to 

solve Volterra integral equations of the first kind and 

Fredholm-Volterra integral equations using the scaling 

function interpolation method. They provided a convergence 

theorem for the numerical solutions of these integral 

equations, ensuring the accuracy and reliability of their 

approach. Dastjerdi and Ghaini (2012) [7] explored a 

numerical solution for Volterra-Fredholm integral equations 

of the second kind. Their method involved the moving least 

squares technique and Chebyshev polynomials, enabling 

effective approximations of solutions. Abdou, El-Kalla and 

Al-Bugami (2011) [1] discussed the existence of a unique 

solution to the Volterra-Fredholm integral equation of the 

second kind. The Volterra integral term was considered in 

time using a continuous kernel, while the Fredholm integral 

term was dealt with in position using a numerical technique 

and a generalized singular kernel. The researchers reduced 

the V-FIESK to a system of Fredholm integral equations 

(SFIEs) using the Toeplitz matrix method and the Product 

Nystrom method, which led to obtaining a linear algebraic 

system of equations.  

Subsequently, Muna and Iman (2018) [10] proposed novel 

algorithms for solving linear Volterra-Fredholm integral 

equations (LVFIEs) of the second kind. Their methods were 

founded on the trapezoidal rule, Weddle's rule, and 

Richardson's extrapolation, offering alternative approaches 

for addressing these types of integral equations. Merve and 

Ercan (2021) [9] introduced the Volterra-Fredholm integral 

equation using Hosoya polynomials. The outcomes of these 

methods were compared through figures, tables, and error 

analyses. The remarkable contributions of the 

aforementioned researchers served as inspiration for our 

work to propose an algorithm based on power series and 

shifted Chebyshev polynomials for solving Volterra and 

Fredholm integral equations. Our objective is to design an 

efficient and accurate approach that reduces computational 

effort while providing an approximate solution for linear 

Volterra-Fredholm integral equations (LVFIEs).  

 

Definition of Basic Terms 

In this section, we define some basic terms that would be 

encountered in this work. 

 

Integral equations (Wazwaz, 2011) [16] 
An integral equation is characterized by the presence of the 

unknown function  that needs to be determined within 

an integral expression. Typically, such an equation takes the 

following form: 

 

 (1) 

Where  is to be determined,  is a given function, 

 is a free parameter,  is called the kernel of the 

integral equation, and  and  are the limits of 

integration  

 

Collocation method (Adebisi et al., 2021) [2] 

Collocation method is a method for the numerical solution 

of ordinary differential equations, partial differential 

equations and integral equations. The idea is to choose a 

finite-dimensional space of candidate solutions usually 

polynomials up to a certain degree and a seveal points in the 

domain called collocation points, and to select the solution 

which satisfies the given equation at the collocation point.  

 

Volterra integral equations (Wazwaz, 2015) [16] 

The Volterra integral equation is defined by having a 

constant lower limit and a variable upper limit. These 

equations are categorized into two groups: the first kind and 

the second kind. A linear Volterra equation of the first kind 

is expressed as follows: 

 

  (2) 

 

Approximate solution (Ayinde et al. 2021a) [6] 

This is the expression obtained after the unknown constants 

have been found and substituted back into the assumed 

solution. It is referred to as approximate solution. 

In this work, approximate solution used is given as 

 

   (3) 

 

where  are unknown constant to 

be found, is the approximating 

polynomials of any kind. M is the degree of approximant, 

where in most cases the better approximate solution (i.e. 

close to the exact solution) 

 

Power series: given as  

 

   (4)  

 

where  are the constants coefficients. The power series is 

a polynomial function if all but a finite number are zero, but 

if most of are nonzero, then its convergence is 

considered. 

 

Chebyshev polynomials (Ayinde et al. 2021b) [7] 

 

  (5) 

  

https://www.mechanicaljournals.com/materials-science


International Journal of Materials Science https://www.mechanicaljournals.com/materials-science 

~ 30 ~ 

where  denotes the unknown constants to be calculated 

and  denotes the Chebyshev polynomials. 

The Chebyshev polynomial denoted by  and valid in 

the interval  is defined as 

 

 (6) 

 

where the recurrence relationship is denoted as 

 

 (7) 

 

To transform Chebyshev polynomials from the interval 

[a, b] to the interval [0, 1] 

To go from interval [a, b] to interval [0, 1], the following 

procedures is carefully followed. 

Here, we put a = 0 and b =1 in equation (10), we obtain 

 

  (8) 

 

(9) 

 

and also, from equation (11) we obtain 

 

 (10) 

 

As a result, for various values of r, we have the shifted 

Chebyshev polynomials shown below. 

when 

 

(11) 

 

Hence, the trial solution is now given as 

 

  (12) 

 

Problem considered and methodology 

In this section, we have examined the Volterra-Fredholm 

integral equation, where we approach the problem by 

assuming an approximate solution of varying degrees using 

both Power series and shifted Chebyshev polynomial 

methods. The general form of the problem under 

consideration is as follows: 

 

 (13) 

 

where  is unknown functions to be determined,  

is a known function, is free parameter,  

are the limits of integration,  is a continuous 

function called Kernel. 

Chebyshev Gauss-Lobbato collocation point for Power 

series 

In our approach to solve equation (13) using Chebyshev 

Gauss-Lobatto collocation points, we consider an 

approximate solution in the following form: 

 

   (14) 

 

Therefore, equation (14) can be rewritten as 

 

 (15) 

 

Where  is the degree of approximant,  are the unknown 

constants that need to be determined, and  represents 

the Power series defined by equation (4). 

Therefore, equation (15) implies  

 

 
 

(16) 

 

Evaluating the integral part of equation (16) gives 

 

(17) 

 

Where,  

 

(18) 

 

After evaluating the integral part of equation (17), the 

resulting equation is collocated at  using the 

Chebyshev Gauss-Lobbato collocation point. 

 

(19) 

 

Where,  

 

   (20) 

 

Thus, equation (20) is then put into matrix form as  

 

    (21) 

  

Where, 
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Thus, equation  gives rise to  algebraic linear 

equation in ) unknown constants and these 

equations are then solved via Maple 18 code to obtain the 

unknown constants and substitutable back into 

equation (4). 

 

Chebyshev Gauss-Lobbato collocation point via shifted 

Chebyshev polynomials 

Here, we assume an approximate solution of the form  

 

    (22) 

  

Thus, substituting (22) into equation (15), we have 

 

(23) 

 

Thus, equation (23) implies  

 

 
 

(24) 

 

By evaluating equation (24)'s integral part, we obtain 

 

(25) 

 

Where  

 

 
 

As a result, equation (25) is evaluated integrally, and the 

resulting equation is collocated at using the 

Chebyshev Gauss-Lobbato collocation point. 

 

(26) 

 

Where  

 

   (27) 

 

Thus, equation (26) is then put into matrix form as  

 

    (28) 

  

Where, 

 

 

 

Thus, equation  gives rise to  algebraic linear 

equation in ) unknown constants, and these 

equations are then solve via Maple 18 code to obtain the 

unknown constants , the 

approximate solution is obtained by substituting these 

values back into equation (22)  

  

Numerical Examples  

To evaluate the method’s efficacy and clarity, we provided 

three numerical examples in this section. A MAPLE 18 

program was used to perform the calculations. Let m (z) and 

(z) stand for the approximate and exact solutions, 

respectively. ErrorM = | m(z) —  (z)| 

 

Numerical Example 1  
Let's consider the Fredholm integral equation of the second 

kind (Wazwaz, 2015) [16] 

 

   (29)  

 

with exact solution  

 

      (30) 

 

Numerical Example 2  
Let's consider the Volterra integral equation of the second 

kind (Wazwaz, 2015) [16] 

 

  (31) 

  

with exact solution  

 

     (32) 

 

Numerical Example 3  
Let's consider the Volterra integral equation of the second 

kind (Wazwaz, 2011) [15] 

 

  (33) 

 

with exact solution  

 

     (34) 

 

Results & Discussion 

In this section, we utilized Chebyshev-Gauss-Lobbatto 

collocation points to solve sample problems. The numerical 

solutions obtained through this method were compared with 

the exact solutions of the sample problems. Moreover, we 

also compared the absolute errors of the results obtained 

using power series and shifted Chebyshev polynomials as 

basis functions. In the tables, the following notations were 

used to present the results. 
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PS: Solution via Chebyshev Gauss-Lobatto collocation 

using Power series. 

SCP: Solution via shifted Chebyshev polynomials, which 

are the proposed method in this paper. 

 
Table 1: Results and Absolute errors obtained for example 1 using PS & SCP for case M = 3 

 

      
0.0 0.000000000 0.000000000 1.4875e-10 0.0000000 1.4875e-10 

0.2 0.200000000 0.200000000 0.20000000 0.0000000 0.000000 

0.4 0.400000000 0.400000000 0.39999991 0.0000000 1.000e-10 

0.6 0.600000000 0.600000000 0.59999991 0.0000000 1.000e-10 

0.8 0.800000000 0.800000000 0.79999991 0.0000000 1.000e-10 

1.0 1.000000000 1.000000000 0.99999991 0.0000000 1.000e-10 

 
Table 2: Results and Absolute errors obtained for example 1 using PS & SCP for case M = 5 

 

      
0.0 0.000000000 0.000000000 1.7769x 10-10 0.0000000 1.7769e-10 

0.2 0.200000000 0.200000000 0.199999991 0.0000000 0.0000e-10 

0.4 0.400000000 0.400000000 0.399999991 0.0000000 2.0000e-10 

0.6 0.600000000 0.600000000 0.599999991 0.0000000 4.0000e-10 

0.8 0.800000000 0.800000000 0.799999991 0.0000000 5.0000e-10 

1.0 1.000000000 1.000000000 0.999999991 0.0000000 3.0000e-10 

 
Table 3: Results and Absolute errors obtained for example 2 using PS & SCP for case M = 3 

 

      
0.0 0.000000000 0.0000000 0.73680e-10 0.0000000 1.7360e-10 

0.2 0.198669331 0.1986681 0.198668098 1.2324e-06 1.2324e-06 

0.4 0.389418342 0.3894204 0.389420441 2.0990e-06 2.0990e-06 

0.6 0.564642473 0.5646482 0.564648185 5.7112e-06 5.7113e-06 

0.8 0.717356090 0.7173563 0.717356307 2.1620e-07 2.1630e-07 

1.0 0.841470985 0.8414705 0.841470522 4.6330e-07 4.6320e-07 

 
Table 4: Results and Absolute errors obtained for example 2 using PS & SCP for case M = 5 

 

      
0.0 0.000000000 0.0000000000 0.73680e-10 0.0000000 1.7360e-10 

0.2 0.198669330 0.1986680984 0.198668098 1.2324e-06 1.2324e-06 

0.4 0.389418342 0.3894204413 0.389420441 2.0990e-06 2.0990e-06 

0.6 0.564642473 0.5646481846 0.564648185 5.7112e-06 5.7113e-06 

0.8 0.717356090 0.7173563071 0.717356307 2.1620e-07 2.1630e-07 

1.0 0.841470984 0.8414705215 0.841470522 4.6330e-07 4.6320e-07 

 
Table 5: Results and Absolute errors obtained for example 2 using PS & SCP for case M = 3 

 

      
0.0 0.000000000 0.000000000 -1.9349691e-10 0.0000000 1.93497e-10 

0.2 1.200000000 1.199999991 1.200000000 9.0000e-09 0.0000000 

0.4 2.400000000 2.399999991 2.400000000 9.0000e-09 0.0000000 

0.6 3.600000000 3.599999991 3.600000000 9.0000e-09 0.0000000 

0.8 4.800000000 4.799999991 4.300000000 9.0000e-09 0.0000000 

1.0 6.000000000 5.999999991 5.999999991 9.0000e-09 0.0000000 

 
Table 6: Results and Absolute errors obtained for example 2 using PS & SCP for case M = 5 

 

      
0.0 0.000000000 0.000000000 -6.4812425e-10 0.0000000 6.48120e-10 

0.2 1.200000000 1.200000000 1.200000000 0.0000000 0.0000000 

0.4 2.400000000 2.400000000 2.400000000 0.0000000 0.0000000 

0.6 3.600000000 3.600000000 3.600000000 0.0000000 0.0000000 

0.8 4.800000000 4.800000000 4.799999991 0.0000000 9.0000e-09 

1.0 6.000000000 6.000000000 5.999999991 0.0000000 0.0000000 

 

Conclusions 

Table’s 1-6 display the numerical solutions obtained using 

the Volterra-Fredholm integral equations (VFIEs) with both 

Power series and shifted Chebyshev polynomials as basis 

functions. We compared the approximate solutions and 

absolute errors resulting from these two methods. It was 

observed that, for varying degrees of M, an improvement in 

the approximation of the exact solution occurred in the final 

https://www.mechanicaljournals.com/materials-science


International Journal of Materials Science https://www.mechanicaljournals.com/materials-science 

~ 33 ~ 

iterations of all the problems considered (as evident from 

the error tables).  Additionally, we noticed that in some 

cases, the Power series outperformed the shifted Chebyshev 

polynomials as a basis function, yielding more accurate 

results. This finding indicates that the choice of basis 

function can significantly impact the accuracy of the 

numerical solutions obtained using the VFIEs. 
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