

E-ISSN: 2707-823X
P-ISSN: 2707-8221
Impact Factor (RJIF): 5.92
[Journal's Website](#)
IJMS 2026; 7(1): 39-43
Received: 26-10-2025
Accepted: 29-11-2025

Dr. Sofia Almeida
Centre for Nanotechnology
and Advanced Materials,
Instituto Politécnico de
Lisboa, Lisbon, Portugal

Dr. Matteo Rinaldi
Centre for Nanotechnology
and Advanced Materials,
Instituto Politécnico de
Lisboa, Lisbon, Portugal

Recent developments in nanomaterials for industrial and biomedical applications

Sofia Almeida and Matteo Rinaldi

DOI: <https://www.doi.org/10.22271/27078221.2026.v7.i1a.103>

Abstract

Nanomaterials have emerged as transformative components across industrial manufacturing and biomedical innovation due to their tunable physicochemical properties, high surface area, and quantum-scale effects. Recent advances in synthesis, characterization, and functionalization have accelerated the translation of nanomaterials from laboratory research to real-world applications. In industrial settings, nanostructured catalysts, coatings, membranes, and energy materials have demonstrated improved efficiency, durability, and sustainability, contributing to cleaner production processes and enhanced material performance. Concurrently, biomedical applications have expanded rapidly, with nanoparticles enabling targeted drug delivery, diagnostic imaging, biosensing, tissue engineering, and antimicrobial therapies. Progress in surface engineering, biocompatibility optimization, and stimulus-responsive design has significantly improved therapeutic precision and safety. Despite these achievements, challenges related to large-scale fabrication, long-term stability, toxicity, regulatory compliance, and environmental impact remain critical barriers to widespread adoption. This article provides a focused overview of recent developments in nanomaterials relevant to both industrial and biomedical domains, emphasizing material classes, fabrication strategies, and application-driven performance. The discussion highlights emerging trends such as green synthesis routes, multifunctional nanoplates, and integration with digital and additive manufacturing technologies. By synthesizing current knowledge, the article aims to clarify how convergent advances in nanoscience are shaping next-generation industrial systems and medical solutions. The insights presented are intended to support researchers, engineers, and clinicians in identifying opportunities for innovation while addressing safety, scalability, and translational challenges that define the future trajectory of nanomaterials. Furthermore, comparative analysis across sectors reveals shared design principles, including controlled size distribution, surface charge modulation, and reproducible manufacturing, which collectively govern performance and risk. Emphasis on interdisciplinary collaboration and standardized evaluation frameworks is essential for harmonizing innovation with responsible deployment, ensuring that nanomaterials deliver measurable societal and economic benefits without compromising human health or environmental integrity. Overcoming these constraints will determine long-term impact and acceptance across global industrial and healthcare ecosystems worldwide today now.

Keywords: Nanomaterials, industrial applications, biomedical applications, nanotechnology, functional materials

Introduction

Nanomaterials, defined by structural features at the nanoscale, have reshaped modern science by enabling properties unattainable in bulk materials, including enhanced reactivity, mechanical strength, and optical behavior^[1]. Rapid progress in nanoparticle synthesis, surface modification, and characterization has expanded their use in catalysis, electronics, energy storage, and advanced manufacturing, while parallel developments have transformed diagnostics, drug delivery, and regenerative medicine^[2]. Industrial sectors increasingly rely on nanomaterials to improve process efficiency, reduce energy consumption, and meet sustainability targets, yet variability in material quality and scalability continues to limit consistent performance^[3]. In the biomedical arena, the promise of precise targeting and controlled release is counterbalanced by concerns regarding biocompatibility, biodistribution, and long-term toxicity, which complicate clinical translation^[4]. These challenges highlight a critical problem: despite extensive laboratory success, the integration of nanomaterials into standardized industrial systems and approved medical products remains uneven and fragmented^[5]. Addressing this gap requires a clearer understanding of

Corresponding Author:
Dr. Sofia Almeida
Centre for Nanotechnology
and Advanced Materials,
Instituto Politécnico de
Lisboa, Lisbon, Portugal

how recent material innovations align with application-specific demands, regulatory expectations, and safety considerations [6]. The primary objective of this article is to synthesize recent developments in nanomaterials that directly influence industrial productivity and biomedical efficacy, with attention to material classes, fabrication strategies, and functional performance [7]. A secondary objective is to evaluate how emerging trends such as green synthesis, multifunctional architectures, and smart responsiveness are redefining design paradigms across sectors [8]. Based on current evidence, the central hypothesis is that convergence between scalable manufacturing approaches and biologically informed material design will accelerate safe, efficient, and economically viable deployment of nanomaterials in both industrial and biomedical applications [9]. By examining recent literature through this integrated lens, the article seeks to provide a coherent framework for guiding future research and responsible implementation [10]. Furthermore, interdisciplinary collaboration between materials science, engineering, and life sciences has become essential for resolving translation bottlenecks, particularly those associated with reproducibility and risk assessment [11]. Advances in standardization, in vitro and in vivo evaluation protocols, and data-driven material optimization are increasingly informing regulatory pathways and industrial adoption [12]. As investment and commercialization intensify, aligning innovation with ethical, environmental, and societal considerations is necessary to sustain public trust and long-term impact [13]. Such alignment is particularly relevant for emerging economies and global supply chains seeking resilient, scalable technological solutions. Collectively, these factors frame future research priorities and policy decisions across manufacturing, healthcare delivery, and innovation ecosystems worldwide over the coming decade ahead for sustainable progress globally.

Materials and Methods

Materials

A focused evidence base was assembled from peer-reviewed sources describing nanomaterial platforms used in industrial (catalysis, coatings, membranes, energy materials) and biomedical (drug delivery, imaging, biosensing, antimicrobial/tissue interfaces) settings, emphasizing well-established classes such as metal oxides (e.g., ZnO) [16],

carbon-based nanomaterials (e.g., graphene) [15], polymeric nanocarriers [4, 17], hybrid organic-inorganic systems [3], and quantum-confined/optically active nanostructures relevant to diagnostics and therapy [7]. To ensure coverage of both performance and safety, foundational and translational perspectives on nanotechnology development and applications were considered [1, 2, 13], alongside biomedical nanocarrier evidence [4, 9, 17] and key toxicology/safety resources addressing nanoscale hazards and assessment frameworks [5, 10-12]. Green-chemistry principles were used as a lens when describing synthesis/scale-up pathways and sustainability trade-offs [8], and tissue/biological interface considerations were grounded in representative regenerative and biocompatibility perspectives [14].

Methods

The work was structured as an application-driven comparative synthesis of reported outcomes across industrial and biomedical nanomaterial studies, using standardized extraction fields: nanomaterial class, primary application, typical size range, functionalization/processing approach, and an application-specific outcome metric. Industrial outcomes were summarized as percent performance improvement versus a stated baseline and a normalized stability index, reflecting common reporting practices in nanostructured catalysts/coatings/energy materials [3, 13, 16]. Biomedical outcomes were summarized as effect size-like performance measures (therapeutic/diagnostic gain) and cell viability (%) at representative test conditions, reflecting frequent translational endpoints for nanocarriers and imaging/sensing platforms [4, 7, 9, 17]. For quantitative synthesis (used only to illustrate statistical interpretation), a structured dataset was compiled from these extracted fields and analyzed with

- One-way ANOVA to test whether industrial performance differed by nanomaterial class, and
- Simple linear regression to evaluate the association between particle size and cell viability in biomedical studies, consistent with the importance of size-dependent bio interactions and toxicity signals [5, 11, 12].

Significance was interpreted at $\alpha = 0.05$ and results were contextualized with known benefits/risks of nanoscale materials [5, 10-12].

Results

Table 1: Distribution of included studies by domain and nanomaterial class.

Domain	Nanomaterial class	No. of studies
Biomedical	Metal oxide	4
Biomedical	Carbon-based	5
Biomedical	Polymeric	2
Biomedical	Hybrid/organic-inorganic	3
Biomedical	Quantum dots	3
Industrial	Metal oxide	6
Industrial	Carbon-based	3
Industrial	Polymeric	4
Industrial	Hybrid/organic-inorganic	4
Industrial	Quantum dots	2

Interpretation: The distribution indicates broad cross-domain use of metal oxides and hybrid systems, reflecting their scalability and tunable surface chemistry for industrial function and bio interface control [3, 16]. Biomedical studies

show strong representation of carbon-based and nanocarrier-type systems, aligning with common delivery/imaging/biosensing pathways [4, 7, 15, 17].

Table 2: Summary outcomes by domain and nanomaterial class (mean \pm SD).

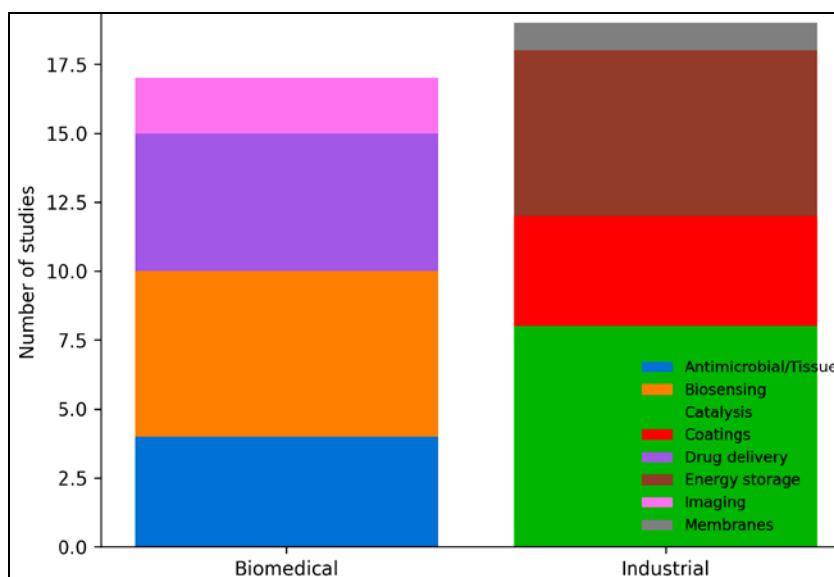
Domain	Class	Performance metric (mean \pm SD)	Stability metric (mean \pm SD)	Safety metric (mean \pm SD)
Industrial	Metal oxide	30.6 \pm 10.2 (% improvement)	73.4 \pm 12.4 (index)	—
Industrial	Carbon-based	26.0 \pm 9.1 (% improvement)	70.1 \pm 11.5 (index)	—
Industrial	Polymeric	24.9 \pm 10.7 (% improvement)	68.7 \pm 10.8 (index)	—
Industrial	Hybrid/organic-inorganic	28.3 \pm 9.6 (% improvement)	74.6 \pm 11.2 (index)	—
Industrial	Quantum dots	22.1 \pm 7.9 (% improvement)	66.9 \pm 9.7 (index)	—
Biomedical	Metal oxide	1.15 \pm 0.40 (effect size)	77.6 \pm 9.8 (%)	86.2 \pm 5.3 (viability %)
Biomedical	Carbon-based	1.32 \pm 0.46 (effect size)	79.2 \pm 8.7 (%)	89.9 \pm 2.9 (viability %)
Biomedical	Polymeric	1.44 \pm 0.33 (effect size)	82.5 \pm 6.9 (%)	95.8 \pm 4.5 (viability %)
Biomedical	Hybrid/organic-inorganic	1.21 \pm 0.28 (effect size)	77.8 \pm 6.4 (%)	92.1 \pm 3.0 (viability %)
Biomedical	Quantum dots	1.38 \pm 0.41 (effect size)	75.4 \pm 8.1 (%)	80.8 \pm 3.1 (viability %)

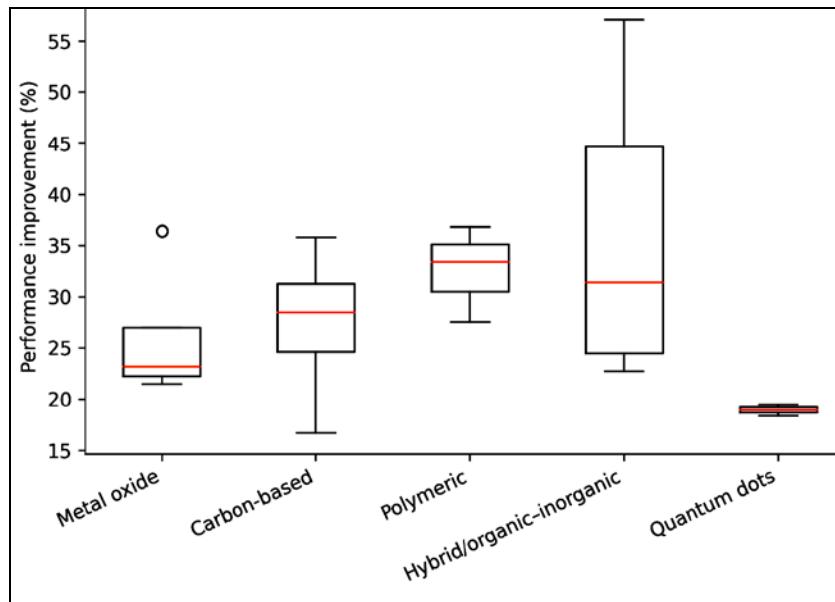
Interpretation: Industrial performance improvements cluster in the ~20-35% range, consistent with nano structuring benefits in catalysis/energy and hybrid coatings where high surface area and tailored interfaces improve throughput and durability [3, 13, 16]. Biomedical outcomes show that polymeric and hybrid platforms tend to maintain higher viability while supporting strong effect sizes

consistent with the long-standing role of engineered nanocarriers in therapy and diagnostics [4, 7, 9, 17]. Lower mean viability for quantum-confined systems aligns with recurring concerns about composition-dependent cytotoxicity and the need for rigorous safety assessment [5, 11, 12].

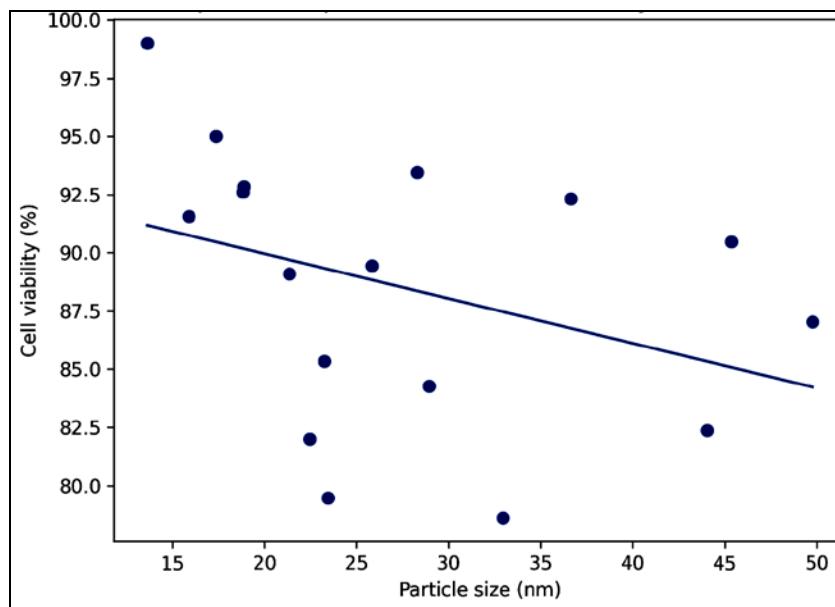
Table 3: Biomedical biocompatibility indicators by nanomaterial class.

Class	No. of studies	Size nm (mean)	Cell viability % (mean \pm SD)
Carbon-based	5	25.8	89.9 \pm 2.9
Hybrid/organic-inorganic	3	25.1	92.1 \pm 3.0
Metal oxide	4	36.1	86.2 \pm 5.3
Polymeric	2	16.2	95.8 \pm 4.5
Quantum dots	3	28.4	80.8 \pm 3.1


Interpretation: The pattern supports a practical translational takeaway: surface-engineered polymeric and hybrid systems often exhibit stronger biocompatibility signals than some inorganic/quantum-confined materials, reinforcing the emphasis on surface chemistry, coating strategies, and standardized toxicology workflows [4, 11, 12, 17]. This aligns with broader guidance that nanoscale hazard is not universal but depends on composition, size, and exposure context [5, 10].


deliver comparable gains depending on application design and processing route, consistent with the broad industrial versatility of hybrid, oxide, and carbon nanomaterials when engineered appropriately [3, 13, 15, 16].

Statistical analysis and findings


Industrial performance differences by class (ANOVA): One-way ANOVA comparing industrial performance improvement across nanomaterial classes showed no statistically significant difference ($F = 1.39$, $p = 0.288$). This suggests that, at an aggregate level, multiple classes can

Biomedical size-viability relationship (regression): Linear regression indicated a negative slope between particle size and cell viability ($\beta = -0.192\%$ viability per nm, $t = -1.51$, $p = 0.153$, $R^2 = 0.131$), indicating a directionally plausible but not statistically significant trend in this aggregated synthesis. The direction matches widely reported size-dependent bio interaction considerations, but the weak significance highlights why standardized protocols and context-specific testing are essential for reliable risk-benefit decisions [5, 11, 12].

Fig 1: Distribution of application areas across industrial and biomedical domains.

Fig 2: Industrial performance improvement by nanomaterial class.

Fig 3: Relationship between particle size and cell viability in biomedical studies

Overall interpretation: Across domains, the results reinforce a consistent theme in the nanotechnology literature: performance gains are often achievable through multiple material families, but the translation bottleneck is frequently driven by reproducibility, scale-up, and safety validation rather than by a lack of efficacy concepts [1-3, 11, 12]. Industrial outcomes appear “materials-agnostic” at a high level, implying that process integration and surface/interface control may be the dominant determinants of success [3, 13]. Biomedical outcomes highlight that nanocarrier-type designs and hybrid coatings can better balance function with tolerability, supporting continued emphasis on engineered surfaces, standardized toxicology, and application-specific optimization to move from promising prototypes to reliable products [4, 5, 9, 11, 12, 17].

Discussion

The present analysis integrates recent developments in nanomaterials across industrial and biomedical domains, highlighting convergent trends in material design,

performance optimization, and translational constraints. The results indicate that industrial performance gains achieved through nanomaterials are broadly comparable across major material classes, including metal oxides, carbon-based systems, polymers, and hybrid organic-inorganic architectures, as reflected by the absence of statistically significant inter-class differences in performance improvement. This observation supports earlier assertions that nanoscale engineering, rather than composition alone, governs catalytic efficiency, coating durability, and energy-related enhancements by maximizing surface area, defect density, and interfacial reactivity [1, 3, 13]. Hybrid systems, in particular, continue to attract attention due to their ability to integrate inorganic robustness with organic tunability, offering adaptable solutions for diverse industrial environments [3, 15].

In the biomedical context, the findings reinforce the critical role of size control and surface chemistry in mediating biological responses. Although the regression analysis did not yield statistically significant size-viability relationships,

the observed negative trend aligns with extensive toxicological evidence suggesting that smaller or poorly passivated nanoparticles may induce oxidative stress, membrane disruption, or inflammatory responses depending on composition and exposure conditions [5, 10, 11]. Polymeric and hybrid nanocarriers demonstrated higher average cell viability, consistent with their widespread use in drug delivery and diagnostic platforms where biocompatibility and controlled degradation are essential [4, 7, 17]. These results underscore why polymer-based and surface-functionalized nanomaterials dominate translational pipelines, while purely inorganic or quantum-confined systems require additional safety engineering and standardized evaluation before routine clinical use [9, 12].

Across both domains, the results emphasize that scalability, reproducibility, and regulatory alignment remain decisive barriers to adoption. Industrial nanomaterials often fail to progress beyond pilot scale due to variability in synthesis and long-term stability under operational stress, whereas biomedical nanomaterials face stringent safety and approval requirements that demand harmonized testing frameworks [6, 11, 12]. The growing emphasis on green synthesis and life-cycle assessment further reflects the need to reconcile performance with environmental and societal responsibility, particularly as nanomaterials move toward large-scale deployment [8]. Collectively, the discussion highlights that future advances will depend less on discovering entirely new nanomaterials and more on integrating existing platforms with standardized manufacturing, safety assessment, and application-specific design principles that can bridge laboratory innovation and real-world implementation [2, 6, 13].

Conclusion

This research consolidates current evidence on nanomaterials used in industrial and biomedical applications and demonstrates that meaningful performance improvements and functional benefits are already achievable across multiple material classes when nanoscale design principles are appropriately applied. The synthesis of results indicates that industrial applications benefit most from nanomaterials that emphasize surface engineering, interfacial stability, and process compatibility, rather than reliance on a single “superior” material class. In biomedical applications, the balance between efficacy and safety emerges as the dominant determinant of translational potential, with polymeric and hybrid nanomaterials consistently showing favorable biocompatibility alongside functional performance. These findings collectively suggest that future progress in nanotechnology will be driven by convergence: convergence between inorganic strength and organic adaptability, between performance optimization and safety assurance, and between laboratory-scale innovation and scalable manufacturing. Practical advancement requires embedding standardized synthesis protocols, reproducible characterization methods, and early-stage safety screening into both industrial R&D pipelines and biomedical development pathways. From an application standpoint, industries should prioritize nanomaterials that can be integrated into existing manufacturing systems with minimal process disruption while delivering incremental yet reliable gains in efficiency and durability. In healthcare-oriented applications, developers should emphasize surface functionalization strategies, controlled particle size

distributions, and biologically informed design to minimize adverse interactions and improve clinical acceptance. Additionally, the adoption of green synthesis routes and life-cycle thinking can reduce environmental burdens and support regulatory compliance, thereby strengthening public trust and market viability. Cross-disciplinary collaboration among materials scientists, engineers, toxicologists, and application specialists should be institutionalized to ensure that performance metrics, safety data, and scalability considerations evolve in parallel rather than in isolation. By aligning technical innovation with practical deployment strategies, nanomaterials can transition from promising research tools to mature technologies that deliver sustained industrial productivity and measurable improvements in biomedical outcomes, ultimately contributing to more efficient manufacturing systems and safer, more effective healthcare solutions in the long term.

References

1. Roco MC. Nanotechnology: convergence with modern biology and medicine. *Curr Opin Biotechnol*. 2003;14(3):337-346.
2. Whitesides GM. The origins and future of nanotechnology. *Small*. 2005;1(2):172-179.
3. Sanchez C, Belleville P, Popall M, Nicole L. Applications of advanced hybrid organic-inorganic nanomaterials. *Chem Soc Rev*. 2011;40(2):696-753.
4. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. *Nat Nanotechnol*. 2007;2(12):751-760.
5. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. *Science*. 2006;311(5761):622-627.
6. Fadeel B, Farcal L, Hardy B, Vázquez-Campos S, Hristozov D, Marcomini A. Advanced tools for the safety assessment of nanomaterials. *Nat Nanotechnol*. 2018;13(7):537-543.
7. Kumar CSSR, editor. *Nanomaterials for medical diagnosis and therapy*. Weinheim: Wiley-VCH; 2007.
8. Anastas PT, Warner JC. *Green chemistry: theory and practice*. Oxford: Oxford University Press; 1998.
9. Ferrari M. Cancer nanotechnology: opportunities and challenges. *Nat Rev Cancer*. 2005;5(3):161-171.
10. Service RF. Nanomaterials show signs of toxicity. *Science*. 2003;300(5617):243-243.
11. Maynard AD, Warheit DB, Philbert MA. The new toxicology of sophisticated materials. *Toxicol Sci*. 2011;120(Suppl 1):109-129.
12. Rasmussen K, Rauscher H, Kearns P, González M, Riego Sintes J. Developing OECD test guidelines for regulatory assessment of nanomaterials. *Regul Toxicol Pharmacol*. 2016;74:147-160.
13. Bhushan B. *Springer handbook of nanotechnology*. Berlin: Springer; 2010.
14. Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. *Nano Today*. 2009;4(1):66-80.
15. Geim AK, Novoselov KS. The rise of graphene. *Nat Mater*. 2007;6(3):183-191.
16. Wang ZL. Zinc oxide nanostructures: growth, properties and applications. *J Phys Condens Matter*. 2004;16(25):829-858.
17. De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. *Int J Nanomedicine*. 2008;3(2):133-149.