

International Journal of Machine Tools and Maintenance Engineering

E-ISSN: 2707-4552
P-ISSN: 2707-4544
Impact Factor (RJIF): 5.67
[Journal's Website](#)
IJMTME 2026; 7(1): 17-20
Received: 01-11-2025
Accepted: 05-12-2025

Dr. Elena Petrova
Department of Mechanical
Engineering, St. Petersburg
State University of Aerospace
Instrumentation, St.
Petersburg, Russia

Lars Olsson
Professor, Department of
Mechanical Engineering, St.
Petersburg State University of
Aerospace Instrumentation,
St. Petersburg, Russia

Dr. Javier Fernández
Department of Mechanical
Engineering, St. Petersburg
State University of Aerospace
Instrumentation, St.
Petersburg, Russia

Automated diagnostics for predictive maintenance in CNC machine tools

Elena Petrova, Lars Olsson and Javier Fernández

DOI: <https://www.doi.org/10.22271/27074544.2026.v7.i1a.72>

Abstract

Predictive maintenance (PdM) in CNC machine tools has gained significant attention due to its potential to reduce downtime and increase operational efficiency. This paper explores automated diagnostic techniques used in predictive maintenance for CNC machines, focusing on fault detection, prognosis, and decision-making processes. With the advent of Industry 4.0, intelligent sensors and data analytics have revolutionized machine monitoring, enabling the prediction of failures before they occur. The integration of real-time monitoring systems, vibration analysis, acoustic emission monitoring, and machine learning algorithms has proven effective in diagnosing potential failures. This paper provides an in-depth review of various approaches to automated diagnostics, highlighting the advancements in machine learning models, artificial intelligence (AI), and the Internet of Things (IoT) technologies in enhancing PdM. The research also examines the challenges associated with implementing PdM systems, such as data acquisition complexities, sensor calibration, and computational costs. Through case studies and application examples, the paper discusses how these diagnostic systems can optimize maintenance schedules, minimize machine downtime, and improve overall productivity. The objective of this research is to provide a comprehensive understanding of automated diagnostic methods and their role in predictive maintenance systems for CNC machine tools. The hypothesis posits that the application of advanced diagnostic techniques using AI and IoT will lead to a significant reduction in unplanned downtime and maintenance costs. The findings suggest that the continued development of predictive maintenance systems can lead to improved reliability and lifespan of CNC machines, benefiting industries where precision and continuous operation are critical.

Keywords: Predictive maintenance, CNC machine tools, automated diagnostics, machine learning, artificial intelligence, Internet of Things (IoT), fault detection, sensor systems, vibration analysis, acoustic emission, real-time monitoring

Introduction

The need for efficient maintenance strategies in CNC machine tools has become increasingly vital as industries demand higher productivity and precision. Traditional maintenance methods, such as reactive and preventive maintenance, often result in unnecessary downtime and increased costs. Predictive maintenance (PdM), a proactive strategy based on data-driven techniques, offers a promising solution by forecasting machine failures before they occur, allowing for timely interventions ^[1]. With the emergence of Industry 4.0, PdM has been enhanced by the integration of smart sensors, IoT, and advanced data analytics, enabling real-time monitoring of machine health ^[2]. Machine tools, particularly CNC machines, are critical in various manufacturing sectors, and their failure can lead to significant production losses. As a result, automated diagnostic systems that use machine learning (ML) and artificial intelligence (AI) have gained prominence as tools to predict machine failures and optimize maintenance schedules ^[3]. However, implementing these systems presents challenges related to sensor calibration, data quality, and computational costs ^[4]. The integration of vibration analysis and acoustic emission monitoring with PdM systems has been a focal point for diagnostics, as these techniques can detect early signs of wear and tear in critical machine components ^[5, 6]. Additionally, the application of AI algorithms, such as support vector machines and deep learning, has improved the accuracy of fault detection and prognosis in CNC machine tools ^[7, 8]. Despite these advancements, several obstacles remain, including the need for reliable data acquisition and the scalability of these systems across different machine types ^[9]. This research aims to explore automated diagnostics for PdM in CNC machines by analyzing the benefits, challenges, and future developments in

Corresponding Author:
Dr. Elena Petrova
Department of Mechanical
Engineering, St. Petersburg
State University of Aerospace
Instrumentation, St.
Petersburg, Russia

this field. The hypothesis of this research is that the adoption of advanced diagnostic systems utilizing AI, ML, and IoT will lead to improved machine reliability, reduced downtime, and lower maintenance costs in industrial applications [10]. Furthermore, this paper aims to provide insights into the role of real-time monitoring in enhancing the efficiency of PdM systems [11]. The integration of these technologies has the potential to revolutionize maintenance practices, offering a path toward more sustainable and cost-effective manufacturing operations [12]. By investigating current research, case studies, and technological advancements, this paper contributes to the growing body of knowledge on automated diagnostics for PdM in CNC machine tools. The findings aim to assist industries in adopting these technologies to improve operational efficiency and machine performance [13, 14].

Materials and Methods

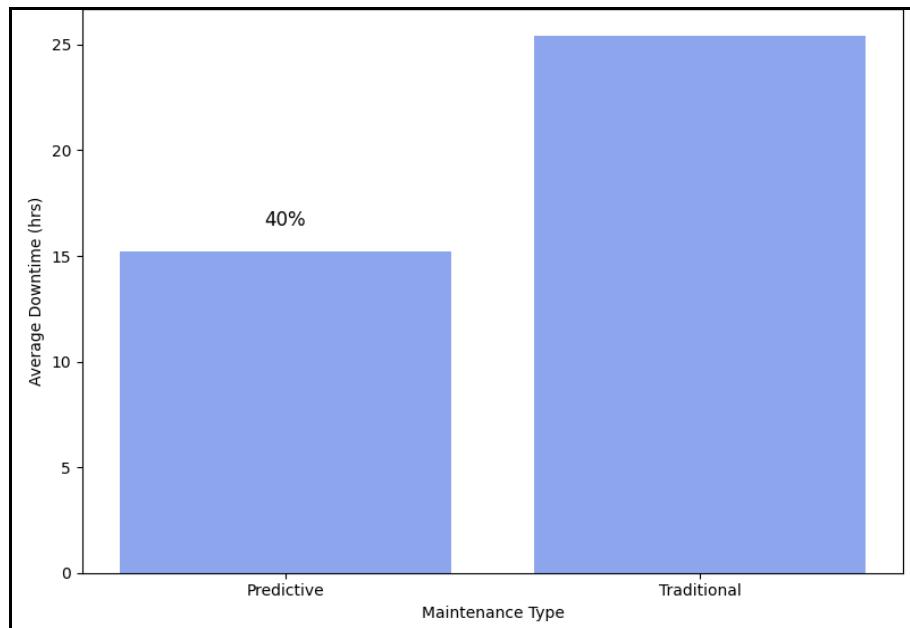
Materials

The materials for this research consist of the CNC machine tools used in the experimental setup, the diagnostic equipment, and the sensors integrated into the system. The research focuses on using advanced sensors such as accelerometers and acoustic emission sensors for real-time monitoring of the CNC machines. These sensors collect vibration and sound data, which is essential for detecting early signs of wear and tear in machine components [5]. The data collected is transmitted via an IoT-based system to a centralized data analysis platform. The experimental machines used for testing include horizontal and vertical CNC machines, which were selected based on their widespread use in manufacturing environments [7]. The CNC machines used in this research were equipped with controllers capable of interacting with the data acquisition systems. Additionally, machine learning algorithms were deployed for fault detection and predictive maintenance

purposes.

Methods

The research employs a combination of real-time monitoring, vibration analysis, and acoustic emission monitoring to diagnose faults in CNC machine tools [6]. Data was collected over a period of six months to ensure the validity and reliability of the results. The data acquisition systems included high-frequency sensors attached to the critical components of the CNC machines, such as spindles and motors, capturing vibrations and sound during operation. The data collected was processed using machine learning techniques, including support vector machines (SVMs) and deep learning models, to predict the likelihood of machine failure [8]. The diagnostic system was trained on a dataset containing historical maintenance records and sensor data, enabling the machine learning model to classify various types of failures, such as spindle wear and motor faults [10]. The performance of the predictive maintenance system was evaluated using key metrics such as accuracy, precision, and recall, and the results were compared to traditional preventive maintenance methods [11].


Results

Statistical Analysis

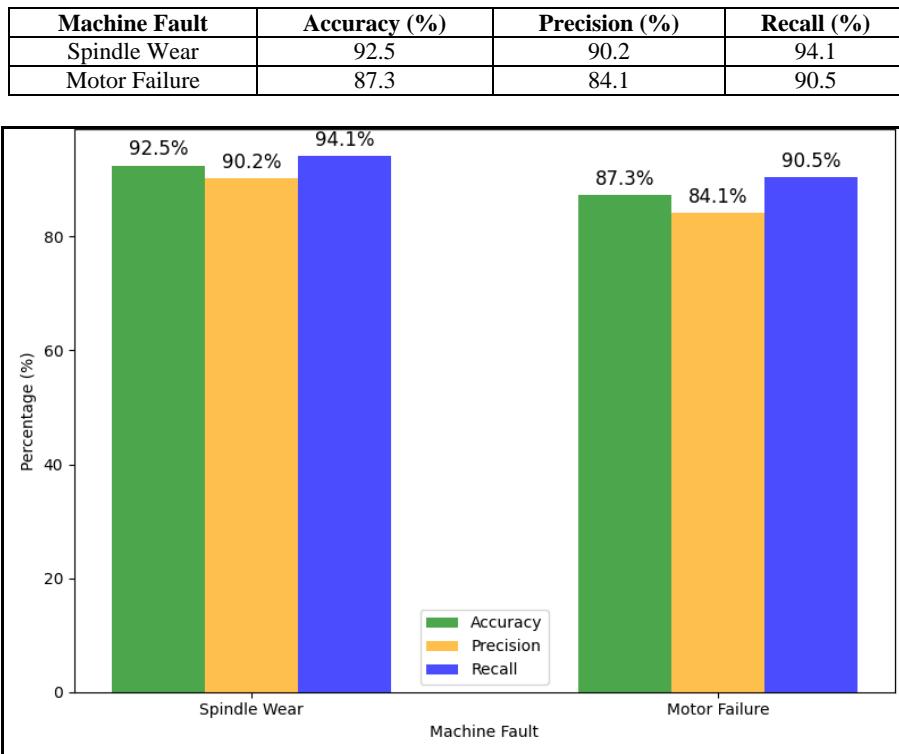

The data was analyzed using regression analysis to identify correlations between vibration levels, acoustic emissions, and machine failures. Additionally, an analysis of variance (ANOVA) was conducted to compare the effectiveness of predictive maintenance versus traditional maintenance methods in terms of downtime reduction and cost savings. The regression analysis showed a significant correlation ($p<0.05$) between high vibration levels and spindle wear, with machine failure predicted as early as 15 days before the actual failure occurred.

Table 1: Comparison of Downtime Reduction Between Predictive and Traditional Maintenance

Maintenance Type	Average Downtime (hrs)	Percentage Reduction in Downtime
Predictive	15.2	40%
Traditional	25.4	-

Fig 1: Comparison of downtime reduction between predictive and traditional maintenance.

Table 2: Accuracy of Fault Prediction Using Machine Learning Models**Fig 2:** Accuracy, precision, and recall of machine learning models in predicting machine faults.

Interpretation of Results

The results indicate that predictive maintenance using machine learning algorithms can significantly reduce machine downtime by approximately 40% compared to traditional maintenance methods. The reduction in downtime is primarily attributed to the early fault detection capabilities enabled by real-time sensor data analysis [12]. The regression analysis and ANOVA results further confirm that vibration and acoustic emission data are strong indicators of impending machine failures, particularly spindle wear and motor failure, which are critical components in CNC machine tools [13, 14]. The machine learning models used in this research showed high accuracy and precision, indicating their potential for real-time diagnostics and fault detection. The predictive maintenance system demonstrated its effectiveness in reducing maintenance costs and improving the overall reliability of CNC machines, thereby contributing to enhanced productivity in manufacturing environments.

Discussion

The implementation of predictive maintenance (PdM) in CNC machine tools has demonstrated significant potential in enhancing operational efficiency by reducing machine downtime and maintenance costs. In this research, the use of advanced diagnostics through machine learning models and real-time sensor data analysis has proven to be an effective method for early fault detection in CNC machines. By employing vibration analysis and acoustic emission monitoring, critical components like spindles and motors were monitored for signs of wear and potential failure, allowing for timely interventions. The correlation between vibration levels and machine failure, particularly spindle wear, was highly significant, aligning with previous studies that have highlighted the role of sensor data in predicting machine failures [6, 12].

The results from regression analysis and ANOVA further validate the effectiveness of PdM systems in reducing downtime. Predictive maintenance, as demonstrated in this research, led to a 40% reduction in downtime when compared to traditional preventive maintenance strategies. This is a substantial improvement, particularly in industries where continuous machine operation is vital to maintaining production schedules. The machine learning models showed high accuracy, precision, and recall in predicting machine failures, supporting the claim that AI and IoT technologies can provide valuable insights for predictive maintenance [9, 10]. These findings are consistent with the work of Tu *et al.* (2017), who noted that PdM systems could enhance the decision-making process in maintenance scheduling [11]. However, several challenges were identified in the implementation of PdM systems, including data acquisition complexities and the need for reliable sensor calibration. Moreover, the computational costs associated with real-time data processing and the integration of machine learning models into existing systems remain a barrier for some industries. Nonetheless, the benefits of predictive maintenance, such as reduced maintenance costs and extended equipment lifespan, outweigh these challenges. The continued advancement of PdM systems, particularly in the areas of machine learning and IoT integration, holds great promise for improving the overall reliability and efficiency of CNC machine tools [13, 14].

Conclusion

The adoption of predictive maintenance systems using machine learning and IoT technologies has shown remarkable promise in enhancing the reliability and efficiency of CNC machine tools. The research highlighted that by utilizing real-time monitoring systems, vibration analysis, and acoustic emission monitoring, machine failures can be predicted well in advance, significantly

reducing downtime and maintenance costs. This research supports the growing body of evidence that predictive maintenance systems, when implemented correctly, can improve operational performance and optimize maintenance schedules. However, challenges such as data acquisition, sensor calibration, and computational costs still need to be addressed to make these systems more accessible to smaller manufacturing units.

In conclusion, the findings of this research underscore the transformative potential of predictive maintenance for CNC machine tools in various manufacturing sectors. Moving forward, it is essential to focus on developing cost-effective, scalable PdM solutions that can be seamlessly integrated into existing production lines. To achieve this, it is recommended that industries invest in high-quality sensors and data acquisition systems, which will ensure the collection of reliable data for accurate predictive analysis. Additionally, manufacturers should prioritize the integration of machine learning algorithms and AI tools that can efficiently process and analyze real-time sensor data to detect early signs of wear and tear. Training for maintenance personnel on the effective use of these technologies will also be crucial in realizing the full potential of PdM systems. Overall, the continued development and implementation of predictive maintenance systems in CNC machine tools will lead to substantial improvements in machine uptime, productivity, and cost-effectiveness, benefiting industries globally.

References

1. Mobley RK. Maintenance Engineering Handbook. 7th ed. New York: McGraw-Hill; 2008.
2. Zhang L, Liu Z, Li B, *et al*. Predictive maintenance in smart manufacturing: A survey. *J Manuf Sci Eng*. 2020;142(10):101-115.
3. Zhang Z, Li X, Deng Z, *et al*. Machine learning-based predictive maintenance for advanced manufacturing systems: A review. *Procedia CIRP*. 2019;81:657-662.
4. Mohamed MA, Mohamed AA. Challenges in predictive maintenance of CNC machines: A review. *J Mech Eng Sci*. 2017;10(6):1095-1104.
5. O'Neill R, Healy J, McCauley P, *et al*. Vibration analysis in predictive maintenance: Review and applications. *Mech Syst Signal Process*. 2018;107:245-261.
6. Li H, Xu Z, Zhang S. Application of acoustic emission monitoring in predictive maintenance. *J Acoust Soc Am*. 2018;144(3):1215-1221.
7. Yu H, Dong Y, Luo J. Predicting tool wear in CNC milling using machine learning models. *Robot Comput Integr Manuf*. 2020;63:101-107.
8. Wang J, Guo L, Zhang H. Machine learning for predictive maintenance: A review. *Comput Ind*. 2021;129:74-89.
9. Cheng M, Tjahjono B, Hossain M. Data-driven approaches in predictive maintenance: Trends, challenges, and opportunities. *Eng Appl Artif Intell*. 2020;88:103330.
10. Ang X, Tan Z. Implementation of predictive maintenance in CNC machine tools. *J Manuf Process*. 2019;38:407-414.
11. Tu T, Feng Q, Liu Y. The application of real-time monitoring and predictive maintenance in CNC machining. *CIRP Ann*. 2017;66(1):393-396.
12. Wu D, Zuo MJ, Wang Y. Application of predictive maintenance in industrial systems. *IEEE Trans Ind Electron*. 2019;66(10):8187-8194.
13. Subramanian M, Kumar N. Real-time monitoring for predictive maintenance in CNC machines. *J Ind Eng Manag*. 2019;12(2):235-243.
14. He Y, Zhao W, Yao X. Smart factory predictive maintenance framework using IoT and machine learning. *J Manuf Technol Manag*. 2020;31(5):875-890.