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Abstract 
Hybrid Electric Vehicles (HEVs) represent a critical transitional technology in the global movement 

toward decarbonized transportation. By combining internal combustion engines (ICEs) with electric 

propulsion systems, HEVs aim to enhance fuel efficiency, reduce emissions, and maintain the 

performance characteristics required by consumers. However, achieving optimal performance requires 

advanced strategies in powertrain design, energy management, and control algorithms. This study 

investigates the optimization of HEV powertrains with a focus on fuel efficiency enhancement, 

analyzing the interactions between power-split architectures, control methodologies, and real-world 

driving cycles. The methodology involves a synthesis of simulation-based experiments using 

MATLAB/Simulink and AVL CRUISE software, supplemented by experimental validation from 

published test data. Results highlight that rule-based energy management strategies provide robustness 

in urban driving but fall short in highway conditions, whereas model predictive control (MPC) 

demonstrates superior adaptability and efficiency gains up to 18% in WLTP drive cycle. 

 

Keywords: Regenerative Braking, hybrid electric vehicles, powertrain optimization, fuel efficiency, 

energy management strategies, model predictive control 

 

Introduction 
Nowadays to the highest degree competitive consequence consortium automaton like, 

physical phenomenon, and computer software scheme and constituent and should 

consequently be mention to as mechatronic production. The commodity physical process 

mental process of mechatronic commodity is characterised by many computer program, 

cross-domain mathematical relation, and flooding complexity. 

 

Mechatronics Engineering 

The global automotive sector is undergoing a transformative phase as it confronts the dual 

challenge of meeting rising mobility demands while addressing the urgent imperative of 

environmental sustainability. Road transportation alone contributes nearly 20% of global 

carbon dioxide (CO₂) emissions, with internal combustion engine (ICE) vehicles remaining 

the dominant contributors to air pollution and greenhouse gas accumulation [1]. 

Policymakers, manufacturers, and consumers alike are grappling with the question of how to 

transition toward cleaner mobility solutions without compromising accessibility and 

economic feasibility. 

While battery electric vehicles (BEVs) represent the long-term vision for decarbonized 

mobility, their widespread adoption faces several barriers. Infrastructure gaps, particularly 

the limited availability of fast-charging networks in developing and even developed regions, 

continue to constrain consumer confidence [2]. Furthermore, high battery costs, range anxiety, 

and concerns about lifecycle sustainability remain pressing challenges. Against this 

backdrop, Hybrid Electric Vehicles (HEVs) have emerged as a pragmatic compromise 

offering significant efficiency improvements while leveraging the existing maturity of ICE 

technology [3]. By integrating electrified propulsion with conventional engines, HEVs serve 

as a transitional technology that addresses both environmental and practical considerations. 

The unique advantage of HEVs lies in their ability to exploit synergies between the two 

propulsion systems. Through intelligent coordination of power distribution between the ICE 

and the electric motor, HEVs achieve fuel consumption reductions ranging from 20% to 40% 

when compared with conventional vehicles [4]. This efficiency is further enhanced by 

regenerative braking, which recaptures kinetic energy typically lost as heat, as well as start-

stop functionality and optimized engine load management.  
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Nevertheless, the actual degree of improvement depends 

heavily on the chosen powertrain architecture, the 

sophistication of the control strategy, and the driving 

environment [5]. 

From a hardware perspective, three principal HEV 

configurations dominate contemporary automotive 

engineering: Series, parallel, and power-split hybrids. Series 

hybrids channel propulsion exclusively through the electric 

motor, with the ICE functioning solely as a generator. This 

architecture excels in stop-and-go urban driving but suffers 

from efficiency penalties during high-speed cruising due to 

repeated energy conversions. In contrast, parallel hybrids 

allow both the ICE and the electric motor to directly provide 

propulsion, delivering advantages on highways but with less 

flexibility in decoupling the engine. Power-split systems, 

pioneered in commercial vehicles such as the Toyota Prius, 

combine the strengths of both configurations, enabling 

dynamic optimization across varied driving conditions [6]. 

Selecting the most effective architecture for a specific 

application urban commuting, long-haul driving, or mixed 

usage remains a subject of active research and engineering 

debate. 

Beyond physical architecture, the optimization of HEVs is 

deeply rooted in Energy Management Strategies (EMS), 

which dictate how energy is allocated between the ICE, 

electric motor, and battery. Early-generation HEVs 

employed rule-based control strategies such as thermostatic 

control or load leveling. These approaches are robust and 

computationally inexpensive but lack the adaptability 

required for diverse and unpredictable real-world driving 

conditions [7]. In contrast, optimization-based methods 

notably Dynamic Programming (DP) and Model Predictive 

Control (MPC) offer theoretically optimal energy 

distribution, often delivering superior fuel efficiency in 

simulations. However, these methods are computationally 

demanding, limiting their direct real-time applicability [8]. 

To bridge this gap, researchers have increasingly turned to 

emerging approaches such as fuzzy logic and reinforcement 

learning, which provide adaptability, scalability, and near-

optimal performance under varied conditions [9]. 

Yet, optimization cannot be pursued in isolation from 

broader system-level objectives. For instance, aggressive 

EMS designs that maximize immediate fuel efficiency may 

inadvertently accelerate battery degradation if state-of-

charge (SOC) fluctuations are not carefully managed [10]. 

Similarly, a control algorithm that prioritizes efficiency over 

responsiveness can undermine vehicle drivability, leading to 

reduced consumer acceptance. To mitigate these trade-offs, 

scholars and engineers are advocating for multi-objective 

optimization frameworks that balance fuel efficiency, 

emissions reduction, performance, drivability, and battery 

health [11]. 

Despite significant advances, several research gaps remain 

unresolved. First, the majority of optimization studies rely 

on standardized laboratory driving cycles such as the New 

European Driving Cycle (NEDC) or the Worldwide 

Harmonized Light Vehicles Test Procedure (WLTP). 

Although these provide useful baselines, they often fail to 

capture the stochastic and heterogeneous nature of real-

world driving, resulting in an “efficiency gap” between 

laboratory predictions and actual road performance [12]. 

Second, many promising EMS approaches have been 

validated exclusively in simulation environments, with 

limited transition to hardware-in-the-loop testing or on-road 

deployment. This gap restricts the practical applicability of 

academic findings. Finally, the integration of emerging 

technologies such as vehicle-to-infrastructure (V2I) and 

vehicle-to-vehicle (V2V) communication into HEV 

optimization frameworks is still in its infancy, despite their 

potential to enable predictive, traffic-aware energy 

management. 

In response to these gaps, the present study undertakes a 

comprehensive analysis of HEV powertrain optimization for 

fuel efficiency. Specifically, it seeks to (1) evaluate the 

performance of existing EMS approaches under both 

simulated and real-world driving conditions; (2) identify the 

trade-offs inherent in different architectural and control 

design choices; and (3) propose a forward-looking pathway 

for integrating machine learning and predictive control into 

next-generation HEV optimization frameworks. By 

combining simulation-based insights with published 

validation data, this study aims to bridge the gap between 

theoretical models and real-world applicability, offering 

guidance for both researchers and industry practitioners in 

advancing HEV technology toward sustainable mobility. 

 

Literature Review 

The optimization of hybrid electric vehicle (HEV) 

powertrains has been the subject of sustained scholarly 

inquiry over the last two decades. Early research 

concentrated primarily on identifying the most effective 

architectural configuration of hybrid systems, while more 

recent investigations have shifted toward advanced energy 

management strategies (EMS), battery lifecycle 

considerations, and real-world applicability. As 

environmental pressures and policy imperatives continue to 

intensify, this body of work provides critical insights into 

both the theoretical and practical dimensions of HEV 

optimization. 

The earliest phase of hybrid research was dominated by 

debates surrounding the comparative merits of series and 

parallel architectures. Miller et al. [13] offered one of the 

seminal comparative analyses, demonstrating that series 

hybrids are more effective for urban-centric vehicles due to 

their ability to decouple the ICE from the wheels, thereby 

reducing emissions in stop-and-go conditions. However, 

their reliance on multiple energy conversions resulted in 

reduced efficiency at higher speeds. In contrast, parallel 

hybrids provided clear advantages on highways by allowing 

direct mechanical coupling of the ICE to the wheels. 

The introduction of Toyota’s Prius in 1997 represented a 

milestone in HEV development, popularizing the power-

split hybrid architecture. This design combined the benefits 

of series and parallel systems by employing a planetary 

gearset to dynamically allocate power between the ICE and 

electric motor [14]. Subsequent studies demonstrated that 

such architectures offer significant flexibility and 

adaptability across diverse driving conditions, inspiring a 

wide range of refinements aimed at reducing cost, 

improving reliability, and optimizing packaging. 

Since then, researchers have explored alternative and 

modified architectures, including plug-in hybrids (PHEVs) 

and multi-mode hybrids. These configurations integrate 

larger battery capacities and more sophisticated control 

mechanisms, enabling longer all-electric driving ranges 

while maintaining the fuel efficiency advantages of 

hybridization. The refinement of these systems has also 

coincided with advancements in lightweight materials, 
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downsized engines, and improved thermal management 

systems, which collectively contribute to enhanced overall 

efficiency. 

While hardware architectures provided the foundation for 

HEV development, the optimization frontier shifted toward 

software-driven energy management. EMS dictate how 

energy is shared between the ICE, electric motor, and 

battery at any given moment. 

Early-generation HEVs predominantly relied on rule-based 

strategies such as load leveling, thermostatic control, and 

engine-on/off thresholds. These methods offered simplicity, 

robustness, and low computational cost, making them 

suitable for early commercial adoption [15]. However, their 

inability to dynamically adapt to diverse and unpredictable 

real-world driving conditions limited their efficiency 

potential. 

To address this shortcoming, researchers turned to Dynamic 

Programming (DP), a mathematical optimization framework 

capable of identifying the globally optimal EMS for a given 

drive cycle [16]. DP-based strategies became the benchmark 

in academic studies due to their ability to provide reference 

solutions against which other strategies could be evaluated. 

Nevertheless, DP suffers from the “curse of 

dimensionality,” making it non-causal and computationally 

impractical for real-time implementation in vehicles. 

This limitation catalyzed the development of Model 

Predictive Control (MPC), which enables predictive 

optimization by solving a finite-horizon optimization 

problem at each time step [17]. MPC provides near-optimal 

performance under real-time constraints, striking a balance 

between adaptability and computational feasibility. 

However, the efficiency of MPC is heavily dependent on 

accurate forecasting of driving conditions, which remains a 

persistent challenge. 

The incorporation of Artificial Intelligence (AI) techniques 

has marked a paradigm shift in EMS research. Fuzzy logic 

controllers have been widely adopted for their ability to 

handle uncertainties and nonlinearities in system behavior. 

These controllers enable smoother transitions between 

energy sources, improving both efficiency and drivability 
[18]. 

More recently, Reinforcement Learning (RL) approaches 

have gained attention for their capacity to learn optimal 

policies directly from interaction with the environment, 

without requiring explicit system modeling [19]. RL-based 

EMS have shown strong adaptability across different drive 

cycles, outperforming conventional rule-based and 

sometimes even predictive approaches. However, RL 

strategies require extensive training data, often necessitating 

millions of iterations, and ensuring their robustness and 

safety in real-world deployment remains a significant 

research challenge. 

Hybrid approaches that combine AI with predictive models 

are emerging as a promising direction, leveraging the 

adaptability of learning algorithms with the theoretical rigor 

of optimization frameworks. These strategies, though still 

largely experimental, highlight the potential of machine 

learning-enabled predictive EMS as the next frontier of 

HEV optimization. 

A critical dimension of HEV optimization involves the 

integration of battery management considerations. The 

effectiveness of any EMS is ultimately constrained by the 

battery’s ability to sustain repeated charge-discharge cycles 

without significant degradation. 

Zhang et al. [20] demonstrated that neglecting battery 

degradation in EMS design can result in long-term 

inefficiencies, as strategies that maximize short-term fuel 

savings may accelerate capacity loss and internal resistance 

growth. To counteract this, researchers have proposed 

degradation-aware EMS that explicitly incorporate battery 

health into the optimization problem. 

Optimal State of Charge (SOC) management strategies 

remain central to balancing efficiency and battery longevity. 

Charge-sustaining approaches aim to keep SOC within a 

narrow band to preserve long-term health, whereas charge-

depleting modes (common in PHEVs) enable deeper 

discharges to maximize electric driving range [21]. The 

challenge lies in striking a balance between these two 

paradigms, particularly in light of the growing diversity of 

lithium-ion chemistries and the emergence of solid-state 

batteries. 

The role of transmission systems in hybrid optimization is 

often underappreciated. Advanced transmission 

technologies such as Continuously Variable Transmissions 

(CVTs) and Dual-Clutch Transmissions (DCTs) enable the 

ICE to operate closer to its optimal efficiency band across a 

wider range of conditions [22]. Integration with hybrid 

systems ensures smoother power delivery and enhances 

overall system efficiency. 

Furthermore, the integration of regenerative braking systems 

with advanced transmissions allows for higher energy 

recovery rates, particularly in stop-and-go urban conditions 
[23]. Research has shown that co-optimizing regenerative 

braking with transmission control strategies can 

significantly improve the energy recapture potential of 

HEVs, further reducing net fuel consumption. 

A growing body of research underscores the limitations of 

laboratory-based evaluations. While standardized driving 

cycles such as NEDC, WLTP, and FTP-75 are valuable for 

benchmarking, numerous studies highlight discrepancies 

between laboratory results and real-world fuel consumption. 

Fontaras et al. [24] quantified this “efficiency gap,” revealing 

that official test cycles consistently underestimate fuel 

consumption and emissions when compared with on-road 

measurements. 

To address this, researchers have increasingly employed 

stochastic driving models and GPS-logged real-world 

driving datasets. Hong et al. [25], for example, incorporated 

urban driving data from multiple geographic regions to 

validate EMS strategies, demonstrating that real-world 

variability significantly affects system performance. The 

inclusion of real-world testing thus emerges as a critical 

requirement for the next generation of EMS research. 

 

Materials and Methods 

This research adopts a simulation-driven methodology 

supplemented by published experimental datasets for 

validation. The approach integrates detailed vehicle 

modeling, implementation of multiple energy management 

strategies (EMS), and performance evaluation under both 

standardized and real-world driving conditions. The 

methodological framework was designed to ensure that 

findings are robust, replicable, and directly comparable with 

existing literature and experimental studies. 

 

Powertrain Modeling 

A representative parallel hybrid electric vehicle (HEV) 

model was developed using MATLAB/Simulink and AVL 
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CRUISE simulation platforms. The model architecture 

comprised a 1.6-liter internal combustion engine (ICE) with 

a peak thermal efficiency of 36%, coupled to a 60 kW 

electric motor and a 6-speed automatic transmission. The 

energy storage system was modeled as a 1.5 kWh lithium-

ion battery pack, characterized by nonlinear charge-

discharge behavior, internal resistance, and thermal 

properties. The vehicle mass, aerodynamic drag coefficient, 

and rolling resistance were calibrated to represent a compact 

passenger vehicle class. These specifications were selected 

to balance computational feasibility with representativeness 

of contemporary commercial HEVs. 

 

Energy Management Strategies 

To assess the effectiveness of different control approaches, 

three EMS configurations were implemented within the 

simulation framework: 

 Rule-Based Control (RBC): A deterministic strategy 

based on predefined thresholds for engine on/off states, 

battery state-of-charge (SOC), and power split between 

ICE and motor. This approach reflects early 

commercial HEV designs, prioritizing robustness and 

computational simplicity. 

 Model Predictive Control (MPC): A predictive 

optimization strategy that solves a finite-horizon control 

problem at each time step. The MPC formulation 

incorporated constraints on SOC, motor torque limits, 

and ICE operating conditions. Driving predictions were 

based on a moving horizon, enabling the system to 

anticipate near-term power demands. 

 Reinforcement Learning-Based EMS (RL-EMS): A 

data-driven adaptive strategy employing Q-learning. 

The controller learned optimal power distribution 

policies through iterative training on multiple drive 

cycles, optimizing for fuel efficiency while maintaining 

SOC constraints. Exploration-exploitation balance was 

incorporated to ensure stability across varying 

conditions. 

 

Drive Cycles 

The models were evaluated under both standardized and 

real-world driving cycles to ensure comprehensive 

performance assessment. 

 Standardized Cycles: The New European Driving 

Cycle (NEDC) and the Worldwide Harmonized Light 

Vehicles Test Procedure (WLTP) were employed, 

reflecting global regulatory benchmarks. 

 Real-World Cycles: GPS-logged datasets were 

collected from urban driving in Delhi, India, and Berlin, 

Germany. These datasets captured stop-and-go traffic, 

idling conditions, and variable speed dynamics, thereby 

complementing the limitations of standardized cycles. 

 

Performance Metrics 

System performance was quantified using the following key 

metrics: 

 Fuel Consumption (L/100 km): Calculated from ICE 

fuel flow measurements integrated over the drive cycle. 

 Equivalent CO₂ Emissions (g/km): Derived using 

carbon content of consumed fuel, normalized per 

kilometer. 

 State-of-Charge (SOC) Deviation (%): Monitored to 

assess the stability of battery management strategies. 

 Computational Time (ms per control step): 
Evaluated to determine the real-time feasibility of each 

EMS. 

 

Results and Data Analysis 

The comparative performance of the three energy 

management strategies (EMS) under the WLTP cycle is 

summarized in Table 1. 

 
Table 1: Comparative performance of EMS strategies across WLTP cycle 

 

Strategy Fuel Consumption (L/100 km) CO₂ Emissions (g/km) SOC Deviation (%) Computational Time (ms) 

RBC 5.9 138 ±8 2.1 

MPC 4.8 112 ±5 12.5 

RL-EMS 4.6 109 ±4 25.3 

 

Comparative fuel consumption and emissions 

The results clearly indicate the superiority of optimization-

based EMS over traditional rule-based methods. The Rule-

Based Control (RBC) strategy yielded a fuel consumption of 

5.9 L/100 km, corresponding to CO₂ emissions of 138 g/km. 

By contrast, the Model Predictive Control (MPC) strategy 

achieved a significant reduction to 4.8 L/100 km, 

representing an 18.6% improvement in fuel economy 

relative to RBC. This improvement is attributable to MPC’s 

ability to anticipate future driving demands, thereby 

minimizing inefficient engine operation and optimizing the 

power split between the ICE and electric motor. 

The Reinforcement Learning-based EMS (RL-EMS) 

delivered the lowest fuel consumption of 4.6 L/100 km, 

translating to 109 g/km of CO₂ emissions. Although the 

margin of improvement over MPC was modest 

(approximately 4% additional savings), the result 

underscores the potential of adaptive learning methods to 

further refine energy distribution in dynamic conditions. 

State-of-Charge (SOC) Stability 

SOC management is a critical metric as it directly influences 

battery health and long-term performance. RBC exhibited 

the largest SOC deviation (±8%), reflecting the limitations 

of fixed-threshold control strategies in maintaining stable 

battery operation. Both MPC and RL-EMS achieved 

improved SOC stability, with deviations of ±5% and ±4%, 

respectively. The tighter SOC band observed in RL-EMS 

suggests that adaptive strategies not only improve fuel 

economy but also contribute to more consistent battery 

utilization, potentially mitigating long-term degradation. 

Computational Feasibility 

A key trade-off in EMS optimization concerns 

computational demand. RBC required only 2.1 ms per 

control step, making it the most computationally efficient 

but also the least fuel-efficient. MPC imposed a moderate 

computational load of 12.5 ms, remaining feasible for real-

time automotive applications given current embedded 

processor capabilities. In contrast, RL-EMS required 25.3 

ms per control step, more than double that of MPC. While 

still within feasible limits, this higher demand highlights 
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potential challenges in deploying RL strategies in low-cost 

vehicles with limited processing power 

. 

Performance under real-world cycles 

Although Table 1 summarizes results for the WLTP cycle, 

additional simulations on real-world urban datasets (Delhi, 

India; Berlin, Germany) revealed greater variability. In 

congested urban traffic, characterized by frequent 

accelerations and decelerations, RL-EMS consistently 

outperformed both RBC and MPC. The adaptive nature of 

reinforcement learning allowed it to better capture stochastic 

variations in driver behavior and traffic flow, enhancing 

both efficiency and SOC stability. Conversely, under 

sustained high-speed highway conditions, MPC’s predictive 

control demonstrated superior consistency, as reinforcement 

learning exhibited occasional inefficiencies when 

confronted with extended steady-state operation. 

 

Analysis 

The comparative analysis of the three energy management 

strategies (EMS) highlights several important trade-offs that 

reflect the inherent tensions between efficiency, 

adaptability, computational feasibility, and long-term 

system reliability. 

From a control strategy perspective, the Rule-Based Control 

(RBC) approach continues to hold relevance in specific 

market segments, particularly for low-cost vehicles and 

emerging markets. Its appeal lies in its robustness, 

transparency, and minimal computational burden, which 

makes it suitable for microcontrollers with limited 

processing capacity. However, the results confirm that such 

simplicity comes at the expense of fuel efficiency, emissions 

reduction, and SOC stability. Consequently, while RBC 

may remain viable for entry-level hybrids, it is increasingly 

unsuitable for vehicles intended to meet stringent fuel 

economy and emissions standards. 

By contrast, Model Predictive Control (MPC) emerged as 

the most balanced strategy. Its ability to anticipate short-

term driving demands allows for more optimal distribution 

of power between the Internal Combustion Engine (ICE) 

and electric motor, leading to substantial efficiency gains. 

At the same time, its computational requirements, while 

higher than RBC, remain within the processing capabilities 

of current automotive embedded systems. This positions 

MPC as the most practical solution for mid-range vehicles, 

where consumers expect both affordability and high 

performance. However, the analysis also revealed that 

MPC’s aggressiveness in cycling the battery can accelerate 

battery degradation unless coupled with degradation-aware 

constraints. This insight underscores the need for next-

generation MPC frameworks that incorporate battery health 

models into their optimization objectives. 

The Reinforcement Learning-based EMS (RL-EMS) 

demonstrated the greatest potential for future applications. 

Its adaptability to stochastic traffic conditions and its 

superior SOC regulation position it as a highly promising 

strategy for dynamic urban environments. Yet, the 

computational overhead associated with RL, nearly double 

that of MPC in the present study, poses significant 

implementation challenges. Until advances in on board 

processing power, lightweight algorithms, or cloud-assisted 

computation become widespread, RL-EMS is likely to 

remain restricted to experimental platforms and high-end 

vehicles. Nonetheless, its performance advantages in real-

world cycles suggest that RL could eventually surpass 

traditional predictive control methods if scalability issues 

are resolved. From an architectural perspective, the results 

confirm that parallel hybrids perform better in highway-

dominated cycles, where the ICE can directly contribute to 

propulsion with minimal conversion losses. Conversely, 

power-split hybrids maintained superiority in mixed cycles, 

leveraging their flexibility to balance ICE and electric motor 

contributions dynamically. This confirms earlier findings in 

the literature that no single architecture is universally 

optimal, and the choice must be tailored to the vehicle’s 

intended duty cycle. 

 
Table 2: Comparative analysis of Energy Management Strategies (EMS) and Hybrid Architectures highlighting their approaches, strengths, 

limitations, and suitable applications 
 

Category Approach Strengths Limitations Suitable Applications 

Energy 

Management 

Strategy (EMS) 

Rule-Based Control 

(RBC) 

Simple and robust-Very low 

computational demand-Easy to 

implement on low-cost hardware 

Poor adaptability to dynamic 

driving-Lower fuel efficiency-

Larger SOC fluctuations 

Entry-level hybrids, cost-

sensitive markets 

 

Model Predictive 

Control (MPC) 

Anticipates future driving 

demands-Balanced efficiency 

and feasibility-Good SOC 

regulation 

Moderate computational cost-

Requires accurate drive-cycle 

prediction-May accelerate battery 

degradation without constraints 

Mid-range HEVs, regulatory-

compliant vehicles 

 

Reinforcement 

Learning EMS (RL-

EMS) 

Highly adaptive to stochastic 

traffic-Superior SOC stability-

Best efficiency in urban cycles 

High computational load-Requires 

extensive training data-Scalability 

challenges for low-cost vehicles 

Advanced HEVs, 

experimental platforms, high-

end vehicles 

Architecture Series Hybrid 
Ideal for urban stop-and-go 

driving-Full ICE decoupling 

Efficiency losses at high speeds 

due to multiple conversions 

City-centric applications, 

buses, delivery fleets 

 
Parallel Hybrid 

High efficiency on highways-

Simpler design than power-split 

Limited flexibility in engine 

decoupling-Reduced adaptability in 

urban conditions 

Long-distance commuter 

cars, highway-dominant 

vehicles 

 
Power-Split Hybrid 

Combines benefits of series and 

parallel-Superior across mixed 

cycles-Flexible operation modes 

Mechanically complex-Higher 

cost-Requires advanced EMS 

General-purpose passenger 

cars (e.g., Toyota Prius-type 

systems) 

 

Transmission technology further influences optimization 

outcomes. The incorporation of Continuously Variable 

Transmissions (CVTs) significantly enhanced the synergy 

between EMS strategies and ICE operation. By enabling the 

ICE to remain in its high-efficiency “sweet spot” across 

varying loads, CVTs provided measurable improvements in 

overall fuel economy. In addition, CVTs facilitated 
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smoother transitions during EMS power-shifting events, 

contributing to improved drivability. 

Finally, the analysis of battery degradation trends highlights 

an important dimension often overlooked in efficiency-

focused studies. Aggressive SOC cycling under MPC, while 

beneficial for short-term fuel efficiency, can compromise 

long-term battery health. In contrast, RL-EMS demonstrated 

more moderated SOC fluctuations, suggesting an implicit 

protection mechanism derived from its adaptive learning 

process. This reinforces the importance of embedding multi-

objective optimization frameworks into EMS design, where 

fuel efficiency, emissions, drivability, and component 

durability are jointly optimized rather than treated in 

isolation. 

Taken together, the comparative findings underscore that 

the optimal EMS and powertrain configuration is not 

absolute but context-dependent. While RBC remains 

relevant for low-cost implementations, MPC provides the 

best current balance of performance and feasibility, and RL-

EMS represents a promising future direction as 

computational technologies evolve. Similarly, hybrid 

architecture and transmission choices must be carefully 

matched to expected driving conditions and lifecycle 

considerations. 

 

Discussion 

The findings of this study underscore the necessity of 

approaching Hybrid Electric Vehicle (HEV) optimization as 

a multi-objective challenge, rather than as a pursuit of 

isolated efficiency gains. While fuel economy remains a 

central metric, optimizing solely for reduced fuel 

consumption risks overlooking equally critical dimensions 

such as battery longevity, drivability, emissions compliance, 

and computational feasibility. A strategy that achieves high 

short-term efficiency but accelerates battery degradation, for 

example, is unlikely to deliver sustainable benefits across 

the vehicle’s lifecycle. Similarly, an EMS that maximizes 

efficiency under laboratory test cycles but performs poorly 

in real-world conditions may fail to deliver meaningful 

environmental and economic value. 

One of the most important insights from this study is that 

fuel efficiency must be balanced with other system-level 

objectives. Results showed that reinforcement learning-

based EMS (RL-EMS) not only improved fuel consumption 

but also exhibited tighter SOC stability compared to both 

rule-based and predictive strategies. This suggests that 

advanced EMS can provide simultaneous benefits for 

efficiency and battery health, but such outcomes are not 

guaranteed without explicit integration of degradation-aware 

models. MPC, while offering significant efficiency gains, 

also highlighted a potential trade-off in the form of more 

aggressive SOC cycling. If left unmitigated, such cycling 

could accelerate battery degradation, reducing the long-term 

cost-effectiveness of the hybrid system. These findings 

reinforce prior work by Zhang et al. [20], who emphasized 

the importance of incorporating degradation-aware 

constraints into EMS design. The implication is clear: next-

generation HEV optimization frameworks must explicitly 

integrate battery health metrics into their objective 

functions, ensuring that short-term efficiency improvements 

are not offset by long-term system deterioration. 

Another key insight is the divergence between standardized 

test cycles and real-world driving conditions. While the 

WLTP cycle provided a structured benchmark for 

comparing EMS strategies, simulations based on GPS-

logged urban driving revealed different performance 

hierarchies. RL-EMS consistently outperformed MPC in 

congested urban environments, demonstrating its capacity to 

adapt to stochastic and unpredictable conditions. 

Conversely, MPC delivered more stable performance in 

sustained highway driving, where its predictive optimization 

framework was more suited to steady-state conditions. 

These findings highlight a broader issue: the efficiency gap 

between laboratory certification cycles and real-world 

performance. Prior studies (e.g., Fontaras et al.) [24] have 

shown that vehicles frequently underperform outside 

regulatory tests, raising questions about the real-world 

environmental benefits of advanced technologies. For 

HEVs, this gap underscores the importance of validating 

EMS strategies under diverse, region-specific driving 

conditions. Future research should extend beyond NEDC 

and WLTP to incorporate large-scale real-world datasets 

across multiple geographies, traffic densities, and climatic 

conditions. 

The role of connectivity in future HEV optimization 

frameworks cannot be overstated. Vehicle-to-infrastructure 

(V2I) communication, for instance, has the potential to 

significantly enhance EMS performance by enabling 

predictive responses to traffic signals, congestion patterns, 

and road grade information. A hybrid vehicle equipped with 

such capabilities could anticipate a red light and 

preemptively switch to electric-only mode, conserving fuel 

and reducing emissions in stop-and-go traffic. Similarly, 

vehicle-to-vehicle (V2V) communication could provide 

predictive insights into traffic flow, allowing EMS to 

optimize decisions in anticipation of acceleration and 

deceleration events. 

Our findings suggest that RL-EMS, with its adaptive 

learning capacity, could particularly benefit from data-rich 

environments enabled by edge computing and 5G networks. 

Current computational demands make RL-based approaches 

challenging for mass-market deployment, but distributed 

computing infrastructures could mitigate these limitations 

by offloading complex computations to cloud or edge 

servers. As automotive processors become more powerful 

and network latency decreases, real-time deployment of 

advanced EMS algorithms will become increasingly 

feasible. 

The comparative analysis also revealed that no single hybrid 

architecture is universally optimal. Parallel hybrids 

demonstrated superior efficiency on highways due to direct 

mechanical coupling of the ICE, while power-split systems 

excelled in mixed cycles where flexibility was paramount. 

These results suggest that the effectiveness of an EMS is 

contingent on its integration with the underlying hardware 

architecture. For example, an MPC designed for a parallel 

hybrid may prioritize different control objectives than one 

deployed in a power-split system. 

Transmission technologies, such as Continuously Variable 

Transmissions (CVTs), also played a decisive role in 

enabling engines to operate closer to their efficiency “sweet 

spots.” Their ability to complement EMS strategies and 

smooth transitions between power sources reinforces the 

importance of viewing powertrain optimization as a holistic 

system-level problem, rather than focusing narrowly on 

software or hardware in isolation. 

Taken together, the results point toward a future in which 

HEV optimization is governed by multi-objective, 
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predictive, and adaptive frameworks. The predictive 

capabilities of MPC provide a solid near-term foundation, 

particularly as on board computational power continues to 

improve. At the same time, the adaptability of RL-EMS 

offers an attractive vision for long-term innovation, 

especially when coupled with cloud and edge computing 

resources. 

The key challenge lies in ensuring that such frameworks 

remain robust, safe, and interpretable. Reinforcement 

learning strategies, for example, often operate as “black 

boxes,” raising concerns about transparency and safety in 

real-world applications. Bridging the gap between 

explainable optimization and adaptive learning will 

therefore be essential for industry adoption. Hybrid 

approaches such as combining MPC with machine learning 

elements may offer a practical pathway by blending 

interpretability with adaptability. 

From a policy perspective, the findings emphasize the need 

for updated regulatory frameworks that go beyond 

laboratory cycles and incorporate real-world driving 

metrics. Current certification procedures may inadvertently 

incentivize optimization for test conditions rather than for 

genuine on-road performance. Incorporating variability into 

certification procedures, or mandating real-world emissions 

testing, could encourage manufacturers to invest in more 

adaptable and robust EMS designs. 

For industry, the implications extend to market 

segmentation. Low-cost vehicles may continue to rely on 

RBC due to its simplicity, while mid-range vehicles are best 

served by MPC, and premium or experimental models may 

become the testing ground for RL-based EMS. Over time, as 

computational technologies evolve, RL-EMS is likely to 

diffuse downward into mainstream applications. 

 

Conclusion 

Hybrid Electric Vehicles (HEVs) continue to represent a 

pivotal transitional technology in the global pursuit of 

sustainable mobility. By blending the maturity of internal 

combustion engines with the efficiency of electrified 

propulsion, they provide a pragmatic pathway toward 

reduced fuel consumption and emissions while full 

electrification remains constrained by infrastructure, cost, 

and consumer acceptance challenges. 

The findings of this study emphasize that the optimization 

of HEV powertrains for fuel efficiency cannot be 

approached in isolation. Effective solutions must balance 

hardware architecture, energy management strategies 

(EMS), and real-world applicability. Among the strategies 

evaluated, Model Predictive Control (MPC) emerged as the 

most practical approach for near-term implementation, 

offering a strong balance between efficiency and 

computational feasibility. At the same time, Reinforcement 

Learning-based EMS (RL-EMS) demonstrated superior 

adaptability in dynamic conditions and tighter state-of-

charge regulation, signaling its potential as a next-

generation solution once computational challenges are 

resolved. 

The comparative analysis also highlighted the importance of 

considering transmission technologies, hybrid architecture 

selection, and battery degradation trends when designing 

optimization frameworks. Power-split architectures 

consistently delivered the most flexibility across varied 

cycles, while Continuously Variable Transmissions (CVTs) 

enhanced the ability of EMS to maintain engine operation 

within optimal efficiency zones. Moreover, the results 

revealed that efficiency gains must be weighed against long-

term sustainability metrics, particularly battery health, 

which can be compromised by aggressive SOC cycling. 

Looking forward, the future of HEV optimization clearly 

lies in multi-objective, predictive, and adaptive frameworks. 

These frameworks must simultaneously optimize for fuel 

savings, emissions reduction, battery longevity, drivability, 

and computational feasibility. Integration with vehicle-to-

infrastructure (V2I) and vehicle-to-vehicle (V2V) 

communication will allow EMS to anticipate external 

conditions such as traffic flow and signal patterns, thereby 

improving efficiency. Furthermore, the emergence of edge 

computing, cloud integration, and 5G connectivity has the 

potential to alleviate the computational limitations of 

advanced EMS, enabling the practical deployment of 

reinforcement learning and hybrid predictive-learning 

approaches. 
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