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Abstract 
This study investigated the tribological behavior of copper-based alloys, specifically Admiralty Brass, 

under varying loads during a continuous 30-minute sliding test. Results showed a direct correlation 

between applied load and contact temperature, which reaching about 42 °C under a 1500 g load and 

staying below 32 °C at 250 g. This temperature rise is due to increased surface pressure and frictional 

heat. Although Admiralty Brass has good mechanical properties, it exhibited higher sensitivity to 

temperature compared to other alloys like copper-brass. An Adaptive Neuro-Fuzzy Inference System 

(ANFIS) model was developed to predict the coefficient of friction based on parameters such as load, 

sliding time, and specimen type. The model showed high accuracy with a 0.67% error. For Bronze 

alloy, the prediction error was 4.60%, while for Admiralty Brass, it a 2.52%. The friction force 

prediction error was as low as 0.02%, confirming the model’s reliability for performance forecasting 

and material selection. 
 

Keywords: ANFIS, tribological, admiralty bronze, bronze alloy 

 

1. Introduction 
Tribology is the science that studies friction and the engineering technology of interacting 
surfaces in relative motion. It deals with the mechanics of mo ving surfaces, which generally 
involve the dissipation of mass (wear) and energy (friction). Friction and wear are not 
inherent material properties but result from operational conditions and usage factors. The 
term "tribology" is derived from the Greek word tripos, meaning friction, and logy, meaning 
science. Thus, its literal translation is "the science of friction." It is a scientific discipline that 
examines the mutual effects between surfaces in contact under relative motion, also 
encompassing the study of solid-body interactions. The fundamental subjects of tribology 
research are friction systems-physical systems consisting of contacting surfaces, frictional 
films, and the stresses generated. Different materials exhibit distinct wear behaviors due to 
variations in their physical, chemical, and mechanical properties [1]. Although there is no 
direct correlation between wear and mechanical properties such as tensile strength, hardness, 
bending resistance, and elongation strength, tribology remains a highly interdisciplinary field 
that integrates physics, chemistry, mathematics, biology, and engineering. The application of 
computational simulation is indispensable for solving mathematical problems and 
fundamental hydrodynamics. With the advancement of engineering technology, industrial 
product structures and specialized equipment have become increasingly complex, and 
operating conditions have grown more demanding. Simultaneously, the requirements for 
reliability and operational stability continue to rise. [2] It also addressed a group studying the 
properties of engineering materials, including: The research analyzes compressive properties 
using straight and curved fibers in brushes that include various fractions of bronze alongside 
graphite has been conducted. The results indicated that brushes filled with curved fibers 
exhibited compressive strength similar to that of brushes filled with straight fibers, while the 
friction coefficients and wear rates of the brushes were reduced [3]. A research study analyzed 
the tribological behavior between steel-copper materials and steel-steel materials when 
adding graphene as a lubricating compound. The steel/steel sliding pair exhibited outstanding 
tribological properties even at high load conditions, while scientists gained better insight into 
graphene's lubricant mechanism [4]. Furthermore, the relationship between the friction 
coefficient of the "60/40" copper alloy and three types of steel, as well as the factors 
influencing the wear mechanism under dry sliding conditions and normal loads, was 
examined. The results confirmed that the material types significantly affect both wear and  
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friction [5]. Regarding the effect of changing the Counter 

face material between the sliding surfaces, studies have 

shown that differences in the counter face material 

significantly affect both wear and friction [6]. The 

researchers studied the wear characteristics of wire rod 

rolling mill bearings with Monoblock material through 

testing three different lubricating oil compositions 

containing either 2.5% or 5% flakes or no flakes included. 

The research used bronze as the bearing material in 

combination with steel for the rotating shaft under solid 

particle-containing oil conditions. Among all parameters the 

environmental variable demonstrated the strongest effect by 

increasing solid particles to generate more volume loss 

together with higher friction coefficient values [7]. 

2. Experimental part 
2.1 Pin-on-Disc Tribometer 
The American Society for Testing and Materials (ASTM) 
classifies the experimental procedure of the Pin-on-Disc 
(PoD) device under standard ASTM G99 for estimating the 
wear rate between two materials in sliding contact. In this 
device, the pin serves as the stationary test specimen, while 
the disc rotates at a constant speed.  
 In this study, a PoD tribometer, model ED-201 Friction 
Monitor and Wear Tester, of Indian origin, was used. The 
device is illustrated in Figure 1 and is situated in the 
Mechanical Engineering Laboratories of the College of 
Engineering at the University of Tikrit. The rotating disc is 
made of stainless steel (C440) with a hardness value of 
approximately 62 HRC, and a surface roughness (Ra) of 
2.394 µm, where Ra represents the average surface 
roughness. 

 

 
 

Fig 1: Pin-on-Disc Device Used for Wear and Friction Testing. 

 
2.2 Material  

Copper Alloys Used in the Study Bronze is an alloy 

primarily composed of copper and tin, and may also contain 

other elements such as aluminum, phosphorus, or 

manganese. The bronze alloy used in this study, with its 

composition detailed in Table 1, was selected for its 

mechanical and chemical properties (specimen 1. Admiralty 

brass, also known as admiralty bronze, is a specialized type 

of copper-zinc alloy with a small addition of tin. This alloy 

was specifically developed for marine applications, hence 

its name “Admiralty” referring to the British Royal Navy, 

which widely adopted it in the 19th century. The 

Mechanical Properties of Bronze Alloys and Admiralty 

Brass are shown in Tables 1 and 2. The Composition 

Analysis of Bronze Alloys (Specimen 1) is shown in Table 

3. The content of the admiralty brass alloy used in this study 

is shown in Table 4 (specimen 2).  

 
Table 1: Mechanical Properties of Bronze Alloys 

 

Property Typical Value 

Tensile Strength 250 - 850 MPa 

Yield Strength 150 - 450 MPa 

Young's Modulus 100 - 120 GPa 

Elongation 5 - 30% 

Brinell Hardness 60 - 200 HB 

Density 8.79624 [g/cm3] 

Melting Point Range 850 - 1050 °C 

Thermal Conductivity 30 - 60 W/m·K 

Specific Heat Capacity 350 - 400 J/kg·K 

Coefficient of Thermal Expansion 17 - 20 × 10⁻⁶/ °C 
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Table 2: Mechanical Properties of Admiralty Brass 
 

Property Typical Value 

Tensile Strength 310 - 480 MPa 

Yield Strength 105 - 250 MPa 

Elongation 25 - 45% 

Brinell Hardness (HB) 80 - 120 HB 

Modulus of Elasticity ~110 GPa 

Density 8.4405 g/cm³ 

Melting Point Range 865 – 890 °C 

Thermal Conductivity ~109 W/m·K 

Specific Heat Capacity ~377 J/kg·K 

Coefficient of Thermal Expansion ~19 x 10⁻⁶ / °C 

 
Table 3: Composition Analysis of Bronze Alloys (Specimen. 1) 

 

No Element % Min Max 

1 Cu 90.71 88.62 91.00 

2 Sn 8.29 9.00 11.00 

3 Fe 0.34 0.00 0.01 

4 Zn 0.15 0.00 0.20 

5 Cr 0.07 N/A N/A 

6 Mn 0.02 N/A N/A 

7 Te 0.01 N/A N/A 

8 Bi 0.01 N/A N/A 

9 Ni 0.01 N/A N/A 

10 Se 0.00 N/A N/A 

11 Pb -0.18 0.00 0.05 

Table 4: Analysis of Admiralty Alloy (Specimen. 2) 
 

No Element % Min Max 

1 Cu 91.05 92.00 96.70 

2 Sn 7.97 N/A N/A 

3 Fe 0.34 0.00 0.80 

4 Zn 0.12 0.00 1.50 

5 Cr 0.06 N/A N/A 

6 Mn 0.02 0.05 1.30 

7 Te 0.02 N/A N/A 

8 Bi 0.01 N/A N/A 

9 Ni 0.01 0.00 0.60 

10 Se 0.00 N/A N/A 

11 Pb -0.20 0.00 0.05 

 
2.3 Specimen Hardness 

Due to the significance of material hardness in tribological 

testing, the hardness of the four copper alloy specimens was 

measured in the laboratories of the Department of 

Mechanical Engineering, College of Engineering, 

University of Tikrit. To ensure the reliability of the test 

results, the measurements were repeated at the Technical 

Institute in Al-Dour using the same testing device, a Vickers 

Digital Automatic Micro Hardness Tester .The Company 

Name Mitutoyo MVK-H Series and type of company 

Mitutoyo, as shown in figure 2. 

 

 
 

Fig 2: Digital Automatic Micro Vickers Hardness Tester. 

 

Each specimen was securely mounted on the device 

platform, the load was set to 500 N, and the diamond 

indenter was applied. The load was held for 15 seconds, 

after which it was slowly removed from the table (5). 
 

Table 5: Hardness of Copper Alloy Specimens Used in the Tests 
 

Specimen No  Harness (Hv) [pa]E+08 

1 1.13 

2 3.10 

3 1.62 

4 1.2252 

 

3. Experimental Program 

Sixteen specimens with dimensions of (30 × 6 × 6) mm 

were prepared using mechanical machining processes 

(cutting and milling) at the Salahaddin Factory in Al-Dour 

District, as the pieces obtained from the Beiji refinery had 

various shapes. The operating parameters used in the 

practical experiments are presented in Table 6. These 

parameters were determined based on previous experiments 
[2, 3]. 

Additionally, the requirements of the ANFIS method were 

taken into consideration to ensure a wide range of normal 

loads for each test. 
 

Table 6: Operating Parameters Used in the Practical Experiments 
 

Specimen Type Sliding Time (t) [min]  Vertical Load [g] 
1, 2 10, 20, 30 250, 500, 1000, 1500 

 

3.1 Design of ANFIS Model 

A fuzzy system is a system in which the input, output, and 

state variables are defined over fuzzy sets, serving as a 

generalization of deterministic systems. From a holistic 

perspective, fuzzy systems capture the ambiguous 

characteristics of human brain reasoning, offering 

advantages in representing high-level knowledge. They can 

emulate comprehensive human inference to handle 

ambiguous information-processing problems that are 

difficult to solve using traditional mathematical methods, 

thus expanding computer applications in the humanities, 

social sciences, and complex systems. 
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Fuzzy Adaptive Neuro-Fuzzy Inference Systems (ANFIS) 

are artificial intelligence modeling techniques with 

structures resembling human brain cells. ANFIS combines 

the best features of Fuzzy Logic (FL) systems and Artificial 

Neural Networks (ANN), making it a specialized member of 

the ANN family. In this study, an ANFIS model was 

developed to predict the tribological behavior of four types 

of copper alloys based on experimental data obtained from 

practical tests. The ANFIS network consists of five layers, 

as illustrated in Figure 3. The fuzzy inference system forms 

the core of the ANFIS network. The first layer receives 

inputs and transforms them into fuzzy values using 

membership functions [12]. 

 

 
 

Fig 3: Components of the ANFIS Network 

 

4. Experimental Working  
4.1 Coefficient of Friction 

Bronze Alloy (Specimen 1) 
Figure 4 illustrates the relationship between sliding time 

(minutes) and the coefficient of friction (μ) under four 

different applied loads. Based on the experimental results, it 

was observed that at a load of 250 g, the coefficient of 

friction was relatively high (0.22-0.245) and showed a slight 

upward trend over time. This indicates that increased 

mechanical contact or the development of a wear layer may 

contribute to the increased resistance in the alloy. Under a 

load of 500 g, the coefficient of friction initially decreased 

from 0.125 to 0.10, suggesting stability or a reduction in real 

contact area due to load redistribution. At 1000 g, a slight 

variation was observed within the range of 0.095-0.105, 

indicating a quasi-stable frictional behavior. The lowest 

coefficient of friction (0.08-0.09) was recorded under the 

1500 g load and remained relatively low with a slight 

tendency to decrease over time. From these findings, we 

conclude the following: 

1. The coefficient of friction decreases as the applied load 

increases, which is a well-known behavior in tribology 

due to: 

 Increased pressure between the surfaces reducing 

the real contact area. 

 Changes in the surface layer that lead to reduced 

resistance. 

2. Friction is more stable at higher loads (1000-1500 g), 

making these conditions suitable for applications 

requiring mechanical stability. 

3. Lower loads (e.g., 250 g) exhibited a gradual increase 

in the coefficient of friction, which may indicate: 

 Progressive wear over time. 

 Accumulation of frictional by-products that affect 

the surface [12]. 

 

 
 

Fig 4: Illustrates the variation of the coefficient of friction for Specimen 1 vs the sliding time of 30 minutes. 

 

Admiralty Brass Alloy (Specimen 2) 
Figure 5 presents the relationship between the coefficient of 

friction and sliding time for the admiralty brass alloy under 

four different applied loads. The results showed that at a 250 

g load, the highest coefficient of friction was recorded 

(0.27-0.28). It then stabilizes somewhat, followed by a 

decrease around the 15-minute mark, and finally reaches a 

steady state. This suggests that at low loads, contact 
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between surfaces is more localized, leading to higher 

friction values. At a load of 500 g, the coefficient of friction 

was also relatively high (0.17-0.18), likely due to the 

absence of a well-developed wear layer. It gradually 

increases until around 15-20 minutes, then begins to 

stabilize. This behavior indicates the initial formation of a 

stable tribo-film (wear layer) that helps reduce sudden 

changes in friction. At 1000 g, lower friction values were 

observed (0.10-0.115) with a slight increase over time, 

eventually stabilizing with a slight upward trend by minute 

25. This can be explained by the increased plastic 

deformation of the surfaces under higher loads, which helps 

stabilize the surface layer and reduce fluctuations in the 

coefficient of friction. At the highest load of 1500 g, the 

lowest coefficient of friction was recorded (0.07-0.09), with 

very minimal variation over time. This suggests that higher 

loads promote the flattening or merging of microscopic 

asperities, which reduces surface interlocking and 

consequently lowers friction, from this we conclude: 

 Increasing the applied load leads to a decrease in the 

coefficient of friction. 

 This is due to increased actual contact area and surface 

deformation, which reduce resistance to motion. 

 The coefficient of friction tends to stabilize after 15-20 

minutes of sliding, likely due to the formation of a wear 

layer or adaptation of the contacting surfaces. 

 Heavier loads enhance the stability of performance and 

reduce fluctuations in friction [8]. 

 

 
 

Fig 5: Illustrates the variation of the coefficient of friction for Specimen 2 vs 

the sliding time of 30 minutes. 

 

4.2 Design of ANFIS Model for Friction Coefficient 

Predictions 
The ANFIS (Adaptive Neuro-Fuzzy Inference System) 

model was developed and constructed after inputting the 

controlled parameters-namely, the applied normal load and 

sliding time-along with the experimentally obtained data for 

the friction coefficient, friction force, and temperature 

variation at the contact surfaces of the test specimens and 

the test rig disc (an uncontrolled parameter). These data 

were collected from experimental tests conducted on four 

types of copper alloys (Specimens 1 and 2). Figure 6 

illustrates the appropriate ANFIS predictive model structure 

for estimating the friction coefficient [9]. 

 

 
 

Fig 6: Generation of an ANFIS Predictive Model for Friction Coefficient 
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The input layer of the ANFIS network represents the 

experimental data for the type of test specimen, sliding time, 

and applied normal load (controlled parameters), while the 

output layer represents the experimentally measured friction 

coefficient (an uncontrolled parameter). The convergence of 

training error is directly related to the number of training 

iterations within the proposed ANFIS model. In this model, 

the minimum number of adaptive iterations was 50, 

achieving a prediction error rate of 0.67% for all copper 

alloy specimens, as demonstrated in Figures 7 and 8. 

 

 
 

Fig 7: represents the number of iterations performed during the training process 

of the ANFIS neural network. 

 

 
 

Fig 8: Illustrates the error and validation results of the ANFIS neural network in 

predicting the coefficient of friction for all test specimens. 

 

Figure 9 displays the rule base governing the input data 

(type of test specimen, sliding time, and applied normal 

load) and the output data (coefficient of friction). These 

rules can be utilized to perform various predictions to 

determine the coefficient of friction values for all test 

specimens. 

 

 
 

Fig 9: presents the rule base governing the relationship between the input and output data. 
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To compare the experimental values with the predicted 

values obtained from the ANFIS model for the variation of 

the coefficient of friction for specimens (1and 2), the 

analysis was carried out randomly according to the applied 

load, as follows: 

Specimen 1 (Bronze alloy) 
Figure 10 illustrates the variation in the coefficient of 

friction for Specimen 2 with changing sliding time under a 

normal load of 500 grams, based on both experimental and 

predicted results. The average error was 4.60%. 

 

 
 

Fig 10: shows the variation of the coefficient of friction with sliding time for 

Specimen 2 at a normal load of 500 grams, comparing the experimental and 

predicted results using ANFIS. 

 

Specimen 2 (Admiralty alloy) 

Figure 11 represents the variation of the coefficient of 

friction for Specimen 4 with sliding time under a normal 

load of 1500 grams, comparing experimental and predicted 

results, where the average error was 2.52%. 

 

 
 

Fig 11: Illustrates the variation of the coefficient of friction with sliding time for 

Specimen 2 under a normal load of 1500 grams, showing both experimental and 

predicted results using ANFIS. 

 

For comparison between the experimental and predicted 

values obtained from the ANFIS model for the variation of 

friction force for specimens (1 and 2) randomly and 

according to the applied load, the following is presented: 

 
Specimen 1 (Bronze Alloy) 

Figure 8 shows the variation of friction force for Specimen 

1 with changing sliding time at a normal load of 500 grams, 

presenting both experimental and predicted results, with an 

error rate of 3.25%. 

b) Specimen 2 (Admiralty Brass Alloy): 

 Figure (9) depicts the variation of friction force for 

Specimen 2 with changing sliding time at a normal load of 

1500 grams for both experimental and predicted results, 

where the error rate was 0.02%. 

 

4.3 ANFIS Model Design for Predicting Loss Material 

between Contact Surfaces 
An ANFIS (Adaptive Neuro-Fuzzy Inference System) 

model was developed and generated by incorporating 

controlled variables, namely specimen type, normal load, 

and sliding distance, along with the uncontrolled variable-

material loss between the contact surfaces. These data were 

obtained from experimental tests conducted on copper alloy 

specimens (1and 2). Figure 12 illustrates the appropriate 

ANFIS model for predicting material loss. Due to the 

variation in input and output data, normalization of both 

input and output parameters was performed to achieve an 

acceptable prediction error rate [10, 11].
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Fig 12: Generation of the ANFIS Predictive Model for Contacts Material Loss. 

 

The input layer represents the experimental data for the 

specimen type, sliding distance, and normal load applied to 

the test specimen s (controlled variables), while the output 

layer represents the experimental data for the contact 

material loss of the test specimen (uncontrolled variable). 

The convergence of the training error is related to the 

number of iterations used in the proposed ANFIS model. In 

this model, the minimum number of adaptive iterations was 

50, achieving a prediction error rate of 0.0109% for all 

copper alloy specimen s. This is illustrated in Figure 13, 

while Figure 14 presents the training results of the ANFIS 

model across all iterations. 

 

 
 

Fig 13: Illustrates the number of iterations performed during the training process 

of the ANFIS neural network and the calculated error rate across all iterations 

for predicting the material loss of the test specimen. 

 

 
 

Fig 14: illustrates the error magnitude and validation results of the ANFIS neural 

network for predicting material loss in all test specimens. 
 

Figure 18 presents the rule base governing the input data 

(type of test specimen, sliding distance, and applied normal 

load) and the output data (material loss of the test 

specimen), which can be utilized to perform various 

predictions and determine the material loss values for all 

tested specimens. To compare the experimental values with 

the predicted values obtained from the ANFIS model for 

changes in contact surface temperature of the specimens ( 1 

and 2), random comparisons were conducted under the 

applied load as follows: 
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Fig 18: Illustrates the governing rules between the input and output data for the material loss of the test specimen. 

 

Conclusions 
1. The tribological analysis of Admiralty Brass (Specimen 

2) revealed a direct relationship between applied load, 
sliding time, and contact temperature. Higher loads 
resulted in increased frictional heat and elevated contact 
temperatures. 

2. Admiralty Brass showed greater thermal sensitivity 
compared to other tested alloys, which could limit its 
suitability for high-load or prolonged operational 
environments. 

3. Despite its favorable mechanical properties, Admiralty 
Brass is more prone to thermal accumulation under 
continuous friction, which may affect long-term 
performance. 

4. The ANFIS model developed for predicting the 
coefficient of friction and friction force demonstrated 
high accuracy, with prediction errors as low as 0.67%, 
confirming the effectiveness of neuro-fuzzy systems in 
tribological forecasting. 

5. The comparative analysis between experimental and 
predicted results showed excellent consistency, 
validating the use of ANFIS in simulating tribological 
behavior of different copper-based alloys. 

 

Recommendations 
1. Admiralty Brass should be used in applications with 

moderate loads or intermittent operating conditions to 
minimize thermal buildup and avoid performance 
degradation. 

2. Future material selection for mechanical systems should 
consider both tribological and thermal characteristics, 
especially in dynamic friction environments. 

3. The use of AI-based modeling tools like ANFIS is 
highly recommended for early prediction of frictional 
behavior, reducing the need for extensive physical 
testing. 

4. Further research is encouraged to expand the ANFIS 
model by incorporating additional parameters such as 
humidity, lubrication conditions, and surface roughness 
for broader application accuracy. 

5. Industries dealing with wear-critical components should 
integrate predictive modeling approaches into their 
design processes to enhance material efficiency and 

operational safety. 
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