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Abstract 
The aim of this study is to analysis of static bending for a steel Reddy beam theory under the influence 

of a uniformly distributed load. The governing differential equations of steel beam are derived based on 

a total potential energy principle. Numerical results show us the effect of both wavelength and cross-

sectional area on the transverse deflection under simply supported beam. The proposed method 

validated by comparing the numerical results obtained with those in the literature and found in 

excellent agreement. 
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1. Introduction 

Beams and plates are essential components of many engineering structures, as beams and 

plates are exposed to many different loads that would cause various elastic and plastic 

deformations. They are used in various fields in the manufacture of aircraft, marine and 

space ships, and the construction of engineering structures. Santos et al. [1] the equations 

governing the work are derived through the use of isotropic Euler-Bernoulli beam theory 

stable on an elastic foundation. Numerical study of different boundary conditions is used to 

determine the transverse deflection. The findings obtained demonstrate a strong concurrence 

with the existing literature, indicating a distinct impact of the elastic foundation on the 

transverse deflection [2]. Saba and Mangulkar the desired equations are to be derived based 

on the hyperbolic shear deformation theory of a cantilever beam which is subjected to a 

distributed load. The numerical approach is employed to get the maximum deflection and 

shear stress that match the literature results reported. The governing equations were derived 

through the utilization of the new shear deformation theory and the proposed ansatz. The 

transverse deflection and stresses were yielded from numerical means under different 

boundary conditions and compared with different theories, and this coincided with excellent 

agreement. In the case of the beam end supports, both natural frequency and transverse 

diffraction are established. A finite element method was used to get values which are 

compared with those presented in the literature. SARAÇOĞL et al. [5] in their research, 

started with the governing equations of the Euler-Bernoulli and Timoshenko beams under the 

influence of a uniformly distributed load. The maximum deflection is determined from 

numerical analysis and solving the governing equations under different boundary conditions. 

Ike [6] Governing equations were determined using Timoshenko BEM theory for a thick 

beam under the influence of a uniformly distributed load along the beam. The transverse 

deflection of the beam under simply supported boundary conditions is determined using 

numerical analytic methods and is shown to be in excellent agreement with the values 

reported in the literature. Author's Name [7] Both the Euler-Bernoulli and Timoshenko beam 

theories were utilized to develop the governing equations. The numerical Meshless technique 

was employed to evaluate the transverse deflection and axial stresses, utilizing various 

boundary conditions. The obtained findings exhibited a high level of concurrence with the 

existing literature. Ajala et al. [8] Different boundary conditions are employed in the finite 

element approach to determine the transverse deflection and natural frequency. The equation 

of motion is determined using first order deformation theory. The MATLAB algorithm 

yielded findings that closely aligned with the existing literature. Shimpi et al. [9] the 

equations controlling the behavior of an isotropic rectangular beam exposed to a uniformly 

distributed load are determined by the use of shear deformation theory and refined beam 

theory. Numerical analytical approaches provide insights into the tangential deflection under 
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various boundary conditions and demonstrate a high level of concurrence with existing research. Sayyad [10] The differential 

equations that describe the behavior of a thick isotropic beam under evenly distributed load are solved in order to determine 

the transverse deflection, axial bending stress, transverse shear stress, and natural frequencies. The results obtained under 

simply supported boundary conditions exhibit a high level of concurrence with the findings documented in the existing 

literature. Nguyen and Nguyen [11] the determination of transverse deflection is achieved by the application of Ritz theory, 

considering various boundary conditions. The numerical method's verification result demonstrates a high level of agreement. 

The governing equations are obtained by the application of a Quasi-3D beam theory, considering the effects of a load 

distributed transversely. Onah et al. [12] the equations controlling the behavior of moderately thick and thick beams subjected to 

a distributed transverse load and axial force are developed using first order shear deformable beam theory. The analytical study 

determines the buckling load and deflection for different boundaries and this shows a good degree of agreement. Karkon [13] 

the finite element method is applied, which allows us to obtain the critical buckling load, natural frequency, and transverse 

deflection by taking into account various boundary conditions being considered. A high degree of agreement between the 

present findings and previously published research literature is shown by the numbers. The transverse deflection of a beam 

when the directed transverse load is applied can be analyzed with the help of hyperbolic shear deformation theory governing 

equations [14]. The findings derived from the numerical analysis of a simply supported beam are juxtaposed with the existing 

literature and demonstrate a high level of concurrence. KIEN [15] the numerical findings indicate that the inclusion of the 

nonlinear factor in the local strain expression significantly impacts the precision of the elements in the analysis of large 

displacement beam and frame constructions. Yesilce and Catal [16] the differential equations governing the motion of a 

rectangular beam in a state of free vibration were obtained by the use of Bernoulli-Euler, Timoshenko, and Reddy-Bickford 

beams, as well as the utilization of Hamilton's principle. These equations were derived under various easily supported 

boundary conditions. The determination of the natural frequency involves the resolution of the governing differential 

equations, which are subsequently validated by a comparative analysis with other obtained outcomes. Yesilce [17] a comparison 

is made between the numerical combination methodology and the secant method by solving the governing differential 

equations, and the single-range and multi-beam natural frequencies derived using Timoshenko beam theory (TBT). The mode 

forms are visually shown in diagrams. Kacar et al. [18] the differential transformation technique is employed to solve the 

governing differential equations for a simply supported beam. The natural frequency is determined by comparing the 

numerical results with those reported in the literature, and it is found to be in excellent agreement. Soltani and Mohammadi [19] 

the numerical outcomes obtained from solving the differential equations governed by Euler-Bernoulli beam theory for a 

simply supported beam indicate that the increase in the non-local parameter leads to a reduction in the critical buckling 

stresses, hence stabilizing the beam. Zhu et al. [20] the numerical analysis reveals that the critical buckling loads exhibit near 

solutions and demonstrate a strong agreement with the numerical findings documented in the existing literature. The results 

indicate that the non-local effect has a significant impact on reducing the critical buckling loads. 

 

2. Model description  

Figure 1 shows a schematic view of a steel beam subjected to the distributed transverse load q(x). The steel beam is simply 

supported and homogeneous, and it is characterized by several parameters: Young's modulus (E), Poisson's ratio (ν), length 

(L), thickness (h), and width (b). It is assumed that the Poisson's ratio (ν) is constant in the thickness direction. 

 

 
 

Fig 1: A steel beam subjected to distributed transverse load 
 

We start deriving the required of governing equations of equilibrium for steel beam are derived based on a total potential 

energy theory. For Reddy beam theory (RBT) the displacements can be written as. 
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By using Eqs. (1a) & (1c) the axial and shear strains are given as. 
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The virtual strain energy (potential energy) of the steel Reddy beam can be written as following. 
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&x xM Q  are the bending moment and shear force respectively.  

 

&x xP R  are the higher order stress resultants can be written respectively. And then. 
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From Eq. (6b) the final virtual strain energy (potential energy) for Reddy beam theory of the static bending. 
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The external work by applied forces for steel Reddy beam theory (RBT) as follows: 
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The final external work for steel Reddy beam theory (RBT). 

 

Where 

q(x): Distributed transverse load 

The governing equations of isotropic steel Reddy beam theory (RBT) by using potential energy theory as following: 

 

0 (9)extU W  
 

 

Substituting Eqs. (7) & (8) into Eq.(9) and setting the coefficients of 0& w   to zero the final equations of equilibrium of 

the Reddy beam theory (RBT) are written as following. 
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The Final equations of equilibrium of the Reddy beam theory of the bending analysis. 

Where: 
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By substituting Eqs. (12a)-(12b)-(12c)&(12d) into Eqs. (10) & (11) the final the governing of equations for Reddy beam 

theory (RBT) as following. 
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3. Solution Methods 

The governing equations of the steel Reddy beam theory (RBT) solved of the static bending by using Navier-type solution 

methods. Isotropic beam subjected to the distributed transverse load q(x). The boundary conditions of the simply-supported 

Reddy beam theory (RBT) are provided at x=0 and x=L. 

The Navier-type solution method for solving the governing equations of simply-supported FGM Reddy beam theory (RBT)
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By substituting Eqs. (15a) - (15b) & (15c) into Eqs. (13) & (14) yields the following. 
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By using Eqs. (16) & (17), the matrix form of the isotropic Reddy beam theory (RBT) for static analysis is obtained as 

follows. 
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3.1 Static analysis 

The numerical results determine the static transverse deflections of the simply supported steel Reddy beam theory (RBT) and 

Navier's-type solution methods. The physical characteristics of the steel beam are as follows Young's modulus (E) =200 Gpa, 

length (L) = 1m, thickness (h) = 0.1m, and width (b) = 0.1m. The longitudinal wave of the steel beam is m=1. 

Maximum transverse deflection of the Reddy beam theory is defined as. 

 

4

0

* *
(19)

*L

E I w
W

q


 
 

Table 1 shows the transverse deflection w with four values of the thickness-to-length ratio (h/L) of simply supported steel 

Reddy beam theory. Numerical analysis shows the transverse deflections in a excellent agreement with of the solutions of the 

Shimpi et al. [9]. Can be seen from the table 1 that the transverse deflections w increases with increasing the values of the 

thickness-to-length ratio (h/L). This is due to the increase in thickness-to-length ratio (h/L), the cross-sectional area decreases 

and causes an increase in transverse deflections w. 

 
Table 1: The transverse deflections of steel Reddy beam theory (RBT) with thickness-to-length ratio (h/L) 

 

thickness-to-length ratio (h/L) Work Present W steel RBT Work Shimpi et al. W steel RBT 

0.01 0.01302 0.01302 

0.05 0.01310 0.01310 

0.10 0.01335 0.01335 

0.15 0.01375 0.01375 

 

Fig 1. It shows the relationship between transverse deflection w and the percentage of thinness for different values of 

longitudinal wave m of the simply supported Ready Beam theory (RBT). The figure shows that when both the percentage of 

thinness (h/L) and the longitudinal wave m increase, the transverse deflection also increases 
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Fig 2: Present effect different values of longitudinal wave m on the transverse deflection w with percentage of thinness (h/L) 

 

Fig 2. The figure shows the variation between the transverse deflection w and both longitudinal wave m and percentage of 

thinness (h/L) of the simply supported Ready beam theory (RBT). It was found from the figure that as the percentage of 

thinness (h/L) increases, the transverse deflection increases, the reason for this is that by increasing the percentage of thinness 

(h/L), the cross-sectional area decreases. It can be seen from the fig 2 that the transverse deflection w increases with increasing 

longitudinal wave m values. 
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Fig 3: Effect of the longitudinal wave m with percentage of thinness (h/L) on the transverse deflection w of the Reddy beam theory 

https://www.mechanicaljournals.com/ijmte


International Journal of Mechanical and Thermal Engineering https://www.mechanicaljournals.com/ijmte 

~ 33 ~ 

4. Conclusion  

This work aims to analyze the static bending behavior of a steel Reddy beam using theoretical methods. When subjected to a 

load that is evenly distributed. The equations regulating the equilibrium of a steel beam are developed using the idea of total 

potential energy. The validity of this approach is established by a comparison between the numerical findings produced and 

the existing results documented in the literature, revealing a high level of agreement. The findings derived from this study 

indicate that a rise in both the percentage of thinness and longitudinal wave leads to a corresponding increase in transverse 

deflection. This phenomenon may be attributed to the reduction in the cross-sectional area of the steel beam as the percentage 

of thinness increases. 
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