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Abstract 
Static bending analysis of functionally graded materials FGM beam subjected to the distributed 

transverse load resting on elastic foundation is investigated based on Reddy beam theory RBT. Shear 

modulus and Young's modulus are changes in thickness direction of the beam. The governing equations 

of equilibrium of FGM beam are derived based on total potential energy theory. Through numerical 

analysis and using the Navier’s method, the maximum transverse deflection is found. Effects both 

spring and shear constants with power law grading index of FGM on deflection are discussed. Using 

numerical results from the literature, we found this paper's results to be in a good agreement. The 

maximum deflection increases with increase in the values of both spring and shear constants. 
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Introduction 

When transverse force is applied Perpendicular to the neutral axis of structural members like 

beams, a bending moment is created. Transverse load, when it acts on a structure member in 

a perpendicular manner, is known as load acting on a structure member transversely. 

Depending on the volume ratio of the first phase to the second, graded materials can be 

obtained by layering two materials of different mechanical properties.  

Rahmani et al. [1] derived the equations of motion. FEM use several boundary conditions to 

determine the maximum deflection, buckling load, and natural frequency. The numerical 

results demonstrate the substantial impact of the slenderness ratio. Chikh [2] analyzed the 

governing equations of motion by applying the theory of sinusoidal shear deformation beams 

and Hamilton's principle. Navier's method is utilized to calculate the maximum deflection, 

critical buckling load, and natural frequencies. Soltani and Asgarian [3] studied the equations 

of motion for a functionally graded beam. Fouad et al. [4] examined the bending analysis of a 

beam based on FGM higher order shear deformation theory supported by a Winkler elastic 

foundation. Navier's method is utilized to calculate the maximum deflection by numerical 

analytics. Yaghoobi and Torabi [5] formulated the equations of motion for Functionally 

Graded Material (FGM) beam. The Galerkin method is used to determine both the critical 

buckling load and natural frequency under various boundary conditions. Chikh [6] 

investigated the static bending analysis of a beam under hyperbolic shear deformation theory 

with a uniform distributed stress. The equilibrium governing equations are obtained by the 

total potential energy principle. Chen et al. [7] employed the Ritz approach to analyze the 

buckling behavior of functionally graded porous beams under various boundary conditions. 

Simsek [8] examined the static buckling analysis of two-dimensional functionally graded 

material (FGM) beams based on Timoshenko and Euler-Bernoulli beam theories under axial 

compressive force. The critical buckling load is determined through the application of the 

Ritz method under different boundary conditions. Lin et al. [9] studied the bending 

characteristics of a functionally graded beam under a uniformly distributed load on an elastic 

basis. Numerical methods are used to determine the maximum deflection of structures with 

simply supported boundary conditions. The results obtained demonstrate good agreement 

when compared with existing numerical data in the literature. Sayyad and Ghugal formulated 

the governing equations of motion for the analysis of bending, buckling, and free vibration in 

a functionally graded beam. Numerical findings are used to determine the buckling load, 

maximum deflection, and frequency by Navier's method. Avcar and Mohammed [11] 

examined the free vibration analysis of a functionally graded beam placed on a Winkler-

Pasternak elastic basis using the Euler-Bernoulli beam theory.  
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The natural frequency is determined through numerical analysis under various boundary conditions. Deng et al. [12]. The 

governing equations are formulated based on Hamilton's principle for a functionally gradient beam supported by an elastic 

foundation. Bouazza et al. [13] utilized hyperbolic shear deformation theory (HYSDT) to analyze the post-buckling behavior of 

a thick functionally graded material (FGM) rectangular beam. The critical buckling load is determined using Navier's method 

for simply supported boundary conditions based on the analytical answers. Li and Batra [14] calculated the buckling load by 

employing the shooting method with various boundary conditions, according to FGM Timoshenko and Euler–Bernoulli beam 

theories. Fouda and colleagues [15] examined the equations of motion using Euler-Bernoulli beam theory. The finite element 

method is utilized to calculate the critical buckling load, maximum deflection, and natural frequency for a FGM Porous beam. 

Noori et al. [16] formulated the controlling equations based on FGM Timoshenko beam theory. The Complementary Functions 

Method is utilized to determine the maximum deflection by considering different boundary conditions. Thai and Vo [17] 

examined the static bending and free vibration of a functionally graded material (FGM) beam utilizing different advanced 

shear deformation beam theories. Determining the equations of motion through the use of Hamilton's principle. Akbaş et al. [18] 

calculated the maximum deflection and natural frequency using Navier's technique with simply supported boundary 

conditions. The governing equations are formulated based on Timoshenko and Euler-Bernoulli beam theories for a 

functionally graded material beam supported by a Winkler elastic foundation. Karamanlı formulated the governing equations 

for FGM beams by applying the total potential energy principle and utilizing Euler-Bernoulli, Timoshenko, and Reddy-

Bickford beam theories. The FGM beam's maximum deflection is calculated using the Symmetric Smoothed Particle 

Hydrodynamics (SSPH) method under different boundary conditions. Vo et al. [20] utilized quasi-3D theory to derive the 

governing equations for FG sandwich beams. Finite element and Navier's methods are employed to determine the maximum 

deflection under various boundary conditions. 

 

Theory and Formulations  

Figure. 1 shows a functionally graded material (FGM) beam with length (L), width (b), and thickness (h). FGM beam is 

subjected to distributed transverse load q (x). Assumed FGM beam is made from two materials at the top of surface is metallic, 

Aluminum with the bottom of surface is ceramic, Alumina. 

 

 
 

Fig 1: Functionally Graded Material (FGM) beam with length (L), width (b), and thickness (h). 

 

Where:
 

, & ,m m c cE G E G  are the material properties of the top and the bottom surfaces of the FGM beam according Eqs. 

(1a) & (1b) when    / 2 , mz h E E   and when    / 2 , cz h E E  ,  ( ) & ( )E z G z  Variation of Young’s 

and shear modulus of FGM.  

 

For Reddy beam theory (RBT) the displacements can be written as:  

 

     
 

 

   

3

0

, y, z z (2 )

, y, z 0 (2 )

, y, z w (2 )

w x
U x x z x a

x

V x b

W x x c

  
 

   
 




 

 

The axial and transverse displacements of any point on the neutral axis are denoted by and, respectively. The displacement in 

the y direction is represented by, and signifies the transverse deflection of the beam. represents the rotation of the cross-section 

at any point on the neutral axis. 

By using Eqs. (2a) & (2c) the axial strain and shear strain are given as: 

https://www.mechanicaljournals.com/ijmte


International Journal of Mechanical and Thermal Engineering https://www.mechanicaljournals.com/ijmte 

~ 12 ~ 

2
3 0

2

20 0

( , , )
(3 )

( , y, z) ( , y, z)
(3b)
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wu x y z
z z a

x x x x

w wu x w x
z

z x x x

 
 

   

   
    

    

    
      

      
 

Where: 
23 4 / ( )h  

 

 

The virtual strain energy (potential energy) of the beam can be written as: 

 

1
U , U (4)

2
ij ij ij ij

v v
dV dV      

 
 

 The virtual strain energy (potential energy) can be written including the axial stress and shear strain of FGM Reddy beam 

theory as follows: 

 

0
( ) (5)

L

xx xx xz xz
A

U dA dx      
 

 

 Where axial stress is denoted by σ, axial strain is denoted by ε, transverse shear stress is denoted by τ, shear strain is denoted 

by γ, the variational operator is denoted by δ, and A represents the cross-sectional area.  

 Substitute equations (3a) and (3c) into equation (5) and utilize equations (7a) and (7b) to calculate the ultimate strain energy 

(potential energy) using FGM Reddy beam theory (RBT) as follows:  

 

     
2

0 020
dx (6)

L

x x x x x x xU M P P w Q R Q R w
x x x

        
    

           


 
 

Where: 

 

3 2

, (7 )

, (7b)

x xx x xz
A A

x xx x xz
A A

M z dA Q dA a

P z dA R z dA

 

 

 

 

 

    
 

xM  is the bending moment
 
and 

xQ  is the shear force force. 

&x xP R  are the higher order stress resultants. 

 

 The external work by applied forces for FGM Reddy beam theory (RBT) as follows: 

 

 

   0 0
0 0

1
, (8)

2

L L

ext ext ext extW F w dx W F w dx 


   
 

 

Where 

( )

0
0

(9 )

(9 )

ext elastic foundation x

ext w G

F F q a

w
F k w k b

x

 


  

   
 

:wk  is the spring constant , Gk  shear constant and ( )xq  distributed transverse load :extF is the external force 

The final external work for FGM Reddy beam theory (RBT) is given as: 

 

2

0
0 020

( ) w (10)
L

ext w G

w
W k w k q x dx

x
 

  
      

  

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The governing equations of FGM Reddy beam theory (RBT) using potential energy principle as follows: 

 

  0 (11)extU w  
 

 

Substituting Eqs. (6) & (10) into Eq.(11) and setting the coefficients of 0& w 
 to zero the final equations of equilibrium 

of FGM Reddy beam theory (RBT) are written as follows: 

 

   

 
22

0
0 02 2

: 0 (12 )

: ( ) (12 )

x x x x

x x x w G

M P Q R a
x

w
w P Q R k w k q x b

x x x

  

  


    


 
     

    
 

By using Hooke’s law for axial and shear stresses and using Eqs. (3a) & (3b) can be written as: 

 

2
3 0

2

20 0

( ) ( ) (13 )

( ) ( ) (13 )

xx xx

xz xz

w
E z E z z z a

x x x

w w
G z G z z b

x x

 
  

    

   
     

    

    
      

     
 

By substituting Eqs. (13a) & (13b) into Eqs. (7a) & (7b) can be obtained as: 

 

2

0

2

2

0

2

0

0

(14a)

(14b)

( ) (14c)

( ) (14d)

x xx xx

x xx xx

x xz xz

x xz xz

w
M D F

x x x

w
P F H

x x x

w
Q A D

x

w
R D F

x

 


 


 

 

  
   

   

  
   

   

 
   

 

 
   

   
 

Where: 

 

  

  

2 4 6

2 4

, , ) ( ) , , (15a)

, , ) ( ) 1, , (15b)

xx xx xx
A

xz xz xz
A

D F H E z z z z dA

A D F G z z z dA







  
 

By substituting Eqs. (14a)-(14b)-(14c)&(14d) into Eqs. (12a) & (12b) the final the governing of equations for FGM Reddy 

beam theory (RBT) obtained as follows: 

 
32

0 0

2 3

4 2 23
2 0 0 0

03 4 2 2

ˆ 0 (16 )

ˆ ( ) (16 )

xx xx xz

xx xx xz w G

w w
D F A a

x x x

w w w
F H A k w k q x b

x x x x x


 

 
 

   
     

   

    
       

       
 

Where: 
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ˆ ,

,

ˆ ,

xz xx xx xxxz xz

xx xxxx xx xx xx

xzxz xz xz xz xz

A A D D D F

D D F F F H

A A D D D F

 

 

 

   

   

   
 

 

Analytical solutions of bending for FGM simply supported Reddy beam theory (RBT) by using Navier-type solution 

method 

The governing equations of the FGM Reddy beam theory (RBT) were solved for static bending using the Navier-type solution 

method. FGM beam under transverse load. The boundary conditions for the simply-supported Reddy beam theory (RBT) of 

functionally graded materials (FGM) are provided at x=0 and x=L. 

 

   

   

0 0 , 0 , 0 , 0 (17 a)

0 , 0 , 0 , 0 (17 )

w
x w

x x

w
x L w b

x x







    
        

    

    
        

       
 

The Navier-type solution method for solving the governing equations of simply-supported FGM Reddy beam theory (RBT) 

the variables ( ) ( ),x xw 
 is defined as follows: 

 

( )

1,2,3

( )

1,2,3

( )

1,2,3

sin (18 )

cos (18 )

sin (18 )

x m

m

x m

m

x m

m

m x
w W a

L

m x
b

L

m x
q q c

L




 















 
  

 

 
  

 

 
  

 






 

 

Where 
,m mW 

 are the unknown Fourier coefficients. 

By substituting Eqs.(18a) – (18b ) & (18c) into Eqs.(16a) & (16b) yields the following: 

  
2 3

3 4 2 2

2

ˆ 0 (19 )

ˆ (19 )

xx xz m xx xz m

xx xz m xx xz G w m m

m m m
D A F A W a

L L L

m m m m m
F A H A k k W q b

L L L L L

  
 

    
  

        
           

           

            
                  

                 
 

By using Eqs. (19a) & (19b) we can find the finalized matrix configuration of FGM Reddy beam theory (RBT) as follows: 

 
2 3

3 4 2 2

2

0
ˆ

(20)

ˆ

m

xx xz xx xz

xx xz xx xz G w
mm

m m m
D A F A

L L L

m m m m m
F A H A k k

qWL L L L L

  


    
 

          
            

          
                                
                
 

Numerical results 

The numerical results determine the static transverse deflections of the simply supported FGM utilizing Reddy beam theory 

(RBT) and Navier's-type solution method. The FGM beam is composed of both metallic (Aluminum) and ceramic (Alumina). 

The physical characteristics of the FGM beam are as follows: Length (L) = 1m, thickness (h) = 0.1m, and width (b) = 0.1m. 

The Poisson's ratio for metallic aluminum and ceramic alumina is comparable. The longitudinal wave number of the beam is 

m=1 and there is a dispersed load present. 

Maximum transverse deflection of the beam is defined as: 

 
3

04

0

100* * *
, (21)

* 2

mE b h L
w w z

q L

 
  

   
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Tables (1&2) shows maximum deflection w with power-law exponential n and the values of slenderness of ratio (L/h). 

Numerical analysis shows maximum deflection in a good agreement with both of solutions of Vo et al. [20] and Armağan 

Karamanlı [19]. It is seen from tables (1&2) that maximum deflection w  increases with increasing the values of the power-law 

exponential (n) in FGM The flexibility of the beam increases as the power-law exponential values (n) rise, making the FGM 

beam closely resemble complete aluminum. 

 
Table 1: Maximum transverse deflections of FGM Reddy beam theory (RBT) with slenderness of ratio is (L/h=5) and power-law 

exponential n 
 

N 
Work w  RBT Vo et al. [21] w  RBT 

Error percentage 

0 3.1860 3.1397 1.4532 

1 6.2977 6.1338 2.6025 

2 8.0790 7.8606 2.7033 

5 9.7108 9.6037 1.1029 

10 10.7921 10.7578 0.3178 

 
Table 2: Maximum transverse deflections of FGM Reddy beam theory (RBT) with slenderness of ratio (L/h=20) and the power-law 

exponential n 
 

(n) 
Work w  RBT Armağan Karamanlı [20] w for RBT 

Error percentage 

0 2.9184 2.8962 0.7607 

0.5 4.1842 4.1538 0.7265 

1 4.9288 4.8914 0.7588 

2 5.7291 5.6799 0.8570 

5 7.0390 6.9619 1.0953 

 

Figures 2 and 3 display the impact of the shear constant KG and spring constant Kw on the maximum deflection in relation to 

the slenderness ratio of FGM Reddy beam theory (RBT). Figures 2 and 3 demonstrate that the maximum deflection increases 

with higher values of slenderness ratio and shear and spring constants, but decreases with increasing deflection.  

 

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
0

1

2

3

4

5

6

7

8

9
x 10
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k
G
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k
G

=4*107

k
G

=8*107

 
 

Fig 2: Present effect of the shear constant KG on the maximum deflection with slenderness ratio 

 

Figures )4 & 5(presents the variation of the maximum deflection w  with power-law index n of FGM and longitudinal wave 

number m. It can be seen from Figures (4 & 5) the maximum deflection increases when the slenderness ratio values increase. 

Figures 4 and 5 show that the greatest deflection increases as both the power-law exponential n and longitudinal wave number 

m grow. 
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Fig 3: Present effect of the spring constant Kw on the maximum deflection with slenderness ratio 
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Fig 4: Effect values of the power-law of index with slenderness of ratio on the maximum deflection 

 

https://www.mechanicaljournals.com/ijmte


International Journal of Mechanical and Thermal Engineering https://www.mechanicaljournals.com/ijmte 

~ 17 ~ 

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-8

 (L/h)

 (
w

x
)

 (wx) versus  (L/h)

 

 

m=1

m=2

m=3

m=4

m=5

 
 

Fig 5: Effect of longitudinal wave number m with slenderness of ratio on the maximum deflection 
 

Conclusion 

Static bending analysis of functionally graded materials FGM beam subjected to the distributed transverse load resting on 

elastic foundation is investigated based on Reddy beam theory RBT. Shear modulus and Young's modulus are changes in 

thickness direction of the beam. The governing equations of equilibrium of FGM beam are derived based on total potential 

energy theory. Through numerical analysis and using the Navier’s method, the maximum transverse deflection is found. 

Effects both spring and shear constants with power law grading index of FGM on deflection are discussed. Using numerical 

results from the literature, we found this paper's results to be in a good agreement. 

1. With increase both values of the shear constant KG and spring constant Kw the maximum deflection decreasing because 

with increasing in the values of spring and shear constants the beam gets stiffer. The numerical results show that the 

increase in values of the material power- law index n of FGM leads to the increasing the maximum deflection.  

2. It can be seen from the numerical results with increasing in the values of power- law index n of FGM with longitudinal 

wave number m leads to increasing in the maximum deflection. 

3. Numerical results shown when increase in values of slendrness ratio the maximum deflection increasing. 
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