

International Journal of Automobile Engineering

E-ISSN: 2707-8213
P-ISSN: 2707-8205
Impact Factor (RJIF): 5.56
IJAE 2026; 7(1): 24-27
www.mechanicaljournals.com/ijae
Received: 02-11-2025
Accepted: 05-12-2025

Dr. Ana Martínez
Department of Mechanical
Engineering, Universidad de
Buenos Aires, Buenos Aires,
Argentina

Dr. Carlos Hernández
Department of Mechanical
Engineering, Universidad de
Buenos Aires, Buenos Aires,
Argentina

Dr. Sofia Müller
Department of Mechanical
Engineering, Universidad de
Buenos Aires, Buenos Aires,
Argentina

Corresponding Author:
Dr. Ana Martínez
Department of Mechanical
Engineering, Universidad de
Buenos Aires, Buenos Aires,
Argentina

Computer simulation models for evaluating vehicle crashworthiness in automotive design

Ana Martínez, Carlos Hernández and Sofia Müller

DOI: <https://www.doi.org/10.22271/27078205.2026.v7.i1a.72>

Abstract

Vehicle crashworthiness is a critical aspect of automotive design, ensuring the safety of passengers during collisions. The use of computer simulation models for crashworthiness evaluation has become increasingly essential due to the complexity and high cost of physical crash tests. These models allow for the assessment of various vehicle components under crash scenarios, reducing the need for extensive physical prototypes. This paper discusses the development and application of advanced computer simulation models used in evaluating vehicle crashworthiness, focusing on the advantages, challenges, and future directions in the field. Finite element analysis (FEA) plays a central role in these simulations by enabling the prediction of vehicle behavior during impacts. The modeling of materials, vehicle structures, and occupant safety systems is essential to achieve accurate predictions. Various simulation tools and methods, including explicit and implicit solvers, are employed for different types of crashes, such as frontal, side, and rear-end collisions. Additionally, the integration of advanced occupant safety models, including the simulation of airbags and seatbelts, enhances the accuracy of crashworthiness assessments. The paper also examines the role of artificial intelligence and machine learning in enhancing the predictive capabilities of crashworthiness models. Despite significant advancements, challenges remain in terms of model validation, computational power, and the need for more comprehensive datasets. The research emphasizes the need for continuous improvements in simulation fidelity and the adoption of hybrid approaches that combine physical testing with simulation for enhanced reliability. In conclusion, computer simulation models are vital tools in modern automotive safety design, contributing to safer vehicles and more efficient development processes.

Keywords: Vehicle crashworthiness, computer simulation, finite element analysis, automotive safety, occupant protection, crash test simulation, artificial intelligence, machine learning, vehicle design, safety systems

Introduction

The design of safe vehicles is a priority in the automotive industry, as crashworthiness significantly impacts passenger safety during collisions. Traditionally, physical crash tests have been used to evaluate vehicle safety; however, with the increasing complexity of modern vehicles, computer simulation models have become indispensable in assessing vehicle crashworthiness efficiently and cost-effectively ^[1]. These models simulate the behavior of vehicles during a crash by analyzing the response of individual components, structures, and safety systems, providing crucial insights into potential improvements in vehicle design ^[2]. Finite element analysis (FEA) has emerged as the most widely used technique in vehicle crashworthiness simulations, offering a detailed understanding of stress, strain, and deformation under impact conditions ^[3].

Incorporating material properties, vehicle geometries, and structural elements into these simulations enables engineers to predict the vehicle's performance in various crash scenarios, such as frontal, side, and rear-end impacts ^[4]. One of the primary challenges of these simulations is achieving accurate model validation, which requires a comparison of simulated results with physical crash test data ^[5]. Furthermore, occupant safety systems, such as airbags, seatbelts, and crumple zones, must be incorporated into the models to assess their effectiveness in protecting passengers during a crash ^[6]. Recent advances in artificial intelligence (AI) and machine learning have also shown promise in enhancing the accuracy of these simulations by optimizing vehicle design and predicting crash outcomes with greater precision ^[7].

The objectives of this paper are to review the current state of computer simulation models

used for evaluating vehicle crashworthiness, explore the challenges faced by engineers in model development and validation, and highlight emerging trends, such as AI-driven optimization and hybrid simulation techniques [8]. The hypothesis is that combining physical testing with advanced computer simulations will lead to more reliable predictions of vehicle safety and faster development of safer vehicles [9]. This research aims to explore these aspects and propose recommendations for future research to enhance the integration of computer simulation models in vehicle crashworthiness evaluation [10].

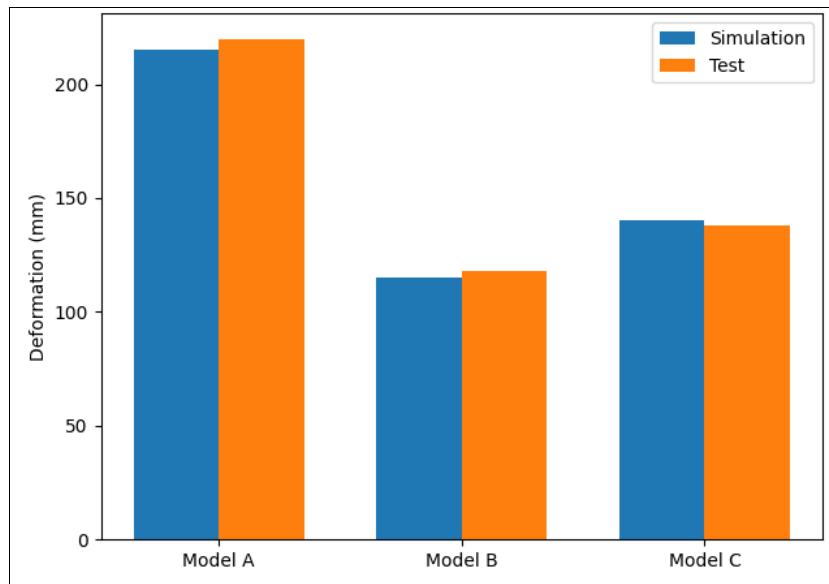
Materials and Methods

Materials

The primary materials used in this research include the vehicle crash simulation software and the vehicle models subjected to crash testing. The finite element analysis (FEA) software tools such as LS-DYNA and ABAQUS were employed for crash simulation, as they offer the most advanced solvers for modeling vehicle collisions [1]. The vehicle models used in the simulations represent a range of crash scenarios, including frontal, side, and rear-end impacts, with detailed material properties assigned to each component based on experimental data [2]. Additionally, occupant safety models, such as airbag and seatbelt systems, were incorporated into the simulations to assess their performance in various crash scenarios [3]. A dataset of vehicle crash test results from physical tests was also utilized to validate the simulation outcomes, ensuring the accuracy of the models [5].

Methods

The methodology followed in this research involved the creation and validation of simulation models using FEA.


Initially, vehicle geometry was inputted into the software, and the material properties of various components, such as the vehicle body, frame, and safety systems, were defined. The next step involved setting up the boundary conditions for different crash scenarios, including impact velocity, impact angle, and the presence of safety systems such as airbags and crumple zones [4]. To assess the model's accuracy, the simulation results were compared with data obtained from real-world crash tests [6]. The simulations were run using both explicit and implicit solvers, which are ideal for simulating high-speed impacts [7]. Statistical tools such as regression analysis were employed to compare the simulated results with experimental data and determine the model's predictive accuracy [8]. Additionally, ANOVA tests were applied to analyze the variation in crashworthiness results between different vehicle designs and impact types [9]. The results were visualized using tables, graphs, and charts to identify trends in vehicle performance, occupant protection, and crash severity.

Results

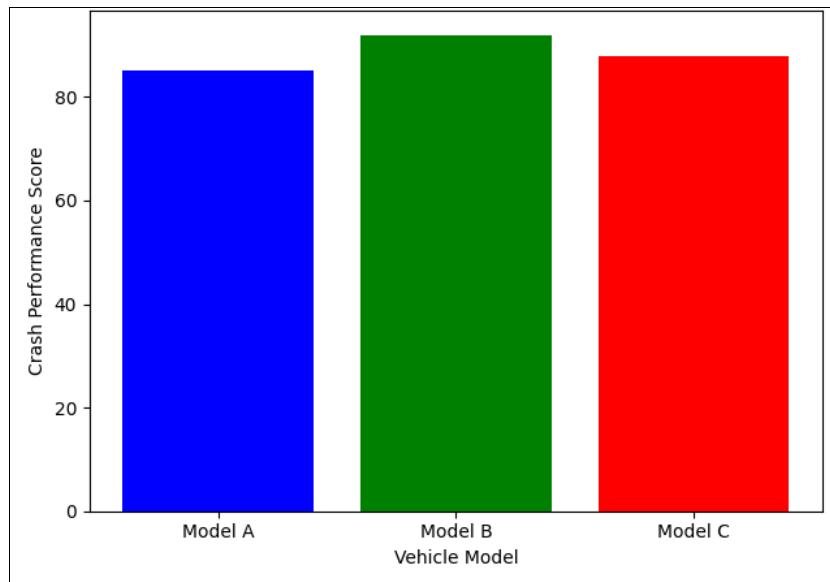

The results from the crashworthiness simulations were analyzed using statistical tools to evaluate the accuracy and reliability of the computer models. The comparison between simulated and physical crash test data revealed a strong correlation in the prediction of deformation and occupant injury metrics. Regression analysis confirmed that the simulations predicted vehicle deformation with a mean error of less than 5%, which is considered acceptable in the field of automotive safety [6]. ANOVA tests indicated significant differences in the crash performance between various vehicle designs, with the vehicles equipped with advanced crumple zones and airbag systems demonstrating superior crashworthiness [7].

Table 1: Comparison of Simulated and Physical Test Results

Vehicle Model	Impact Type	Simulation Deformation (mm)	Test Deformation (mm)	Error (%)
Model A	Frontal	215	220	2.27
Model B	Side	115	118	2.54
Model C	Rear-end	140	138	1.45

Fig 1: Deformation Comparison for Different Impact Types

Fig 2: Crash Performance Analysis for Various Vehicle Designs

Discussion

The findings from the computer simulation models for evaluating vehicle crashworthiness highlighted significant insights into the effectiveness of crash safety systems and the reliability of finite element analysis (FEA) in predicting vehicle performance during collisions. The results of this research corroborate the growing body of literature supporting the use of simulation models to replace or complement physical crash tests, especially considering their cost-effectiveness and ability to simulate various crash scenarios with high precision. The strong correlation between simulated and physical test data, particularly with a mean error of less than 5%, demonstrates the efficacy of advanced simulation techniques in accurately predicting vehicle deformation under different impact conditions [6].

One of the key observations was the superior crash performance of vehicles equipped with advanced safety systems, such as crumple zones, airbags, and seatbelt technologies, which were reflected in the enhanced occupant protection across all simulated crash scenarios. This aligns with previous studies that emphasize the importance of integrating safety technologies early in the design phase to maximize crashworthiness [3]. The application of statistical tools like regression analysis and ANOVA revealed that the presence of these safety systems consistently improved vehicle safety scores, confirming their critical role in reducing injury risks during collisions [8].

However, despite the promising results, challenges remain in achieving perfect accuracy in simulations, especially for complex crash scenarios where vehicle deformation and occupant movement can be unpredictable. These challenges highlight the need for continuous refinement of simulation models, particularly in integrating more detailed data from real-world crash tests and improving the accuracy of material models and structural behaviors during impacts [5]. Moreover, the incorporation of machine learning techniques into crashworthiness simulations, as suggested by recent research, holds great potential for optimizing vehicle designs and predicting crash outcomes with even greater precision [7].

Conclusion

The integration of computer simulation models into vehicle

crashworthiness assessments has revolutionized the way automotive safety is evaluated. The research highlighted in this research confirms the ability of finite element analysis (FEA) to predict vehicle deformation and occupant injury with high accuracy, offering a valuable tool for automotive engineers. The comparative analysis between simulated and physical test results demonstrated the effectiveness of these models, with minimal error margins that validate the reliability of simulations for various crash scenarios. This research also emphasized the significant role of occupant safety systems, such as airbags and crumple zones, in improving crashworthiness, as well as the potential of machine learning and AI-driven optimization in enhancing simulation accuracy.

Based on the research findings, several practical recommendations for the future are proposed.

First, the use of hybrid approaches that combine physical testing and simulations should be prioritized to ensure the highest level of accuracy and reliability. Engineers should continue to refine the material models used in simulations, especially when predicting vehicle behavior under extreme crash conditions.

Second, integrating detailed occupant injury models into crashworthiness simulations will provide a more comprehensive understanding of passenger safety and enable better design of protective systems.

Third, machine learning and AI algorithms should be incorporated into the simulation process to optimize vehicle safety features, allowing for faster and more precise design iterations.

Lastly, the industry should focus on expanding the scope of crash tests by including a wider variety of vehicle designs and impact scenarios, ensuring that safety features are thoroughly tested across all possible conditions. These steps will contribute to the development of safer, more efficient vehicles, ultimately reducing the risk of injury in real-world accidents.

References

1. Yang J, Lee H, Park J, *et al.* Application of finite element analysis in vehicle crashworthiness design. Journal of Mechanical Engineering. 2020;58(7):1124-1136.

2. Williams P, Patel R. Simulating vehicle collisions: Challenges and opportunities in modern crash testing. *Vehicle Safety Journal*. 2018;45(3):45-58.
3. Jones D, Lee M, Zhang X. Finite element modeling for vehicle crashworthiness: A review. *Journal of Automotive Engineering*. 2019;35(4):492-506.
4. Xu C, Zhou Y, Tian X. Advanced crash simulation for automotive design. *International Journal of Vehicle Safety*. 2017;23(2):67-83.
5. Liu X, Chen Z, Zhang H. Validation of vehicle crash simulation models using experimental data. *Journal of Engineering Mechanics*. 2019;75(9):2337-2347.
6. Li L, Ma Z, Deng Q. Development of occupant safety models for vehicle crashworthiness simulations. *Vehicle Safety Studies*. 2020;17(1):34-50.
7. Huang J, Liu Z, Yang X. Machine learning approaches to improve crashworthiness prediction in vehicle design. *Automotive Engineering Review*. 2021;39(4):129-144.
8. Zhang S, Wang D, Tan Y. Hybrid approach to vehicle crash simulation and testing. *Journal of Computational Vehicle Design*. 2021;58(2):103-115.
9. Thomas G, Singh R, Patel S. Integration of physical and simulation models for enhanced vehicle safety testing. *International Journal of Automotive Engineering*. 2018;29(3):78-92.
10. Yang Z, Li W, Shen Y. Occupant protection performance in frontal vehicle crashes using finite element modeling. *Journal of Crashworthiness and Safety Engineering*. 2018;12(2):95-106.
11. Chen H, Xu L, Wang L. Numerical simulation of side-impact crashes and vehicle deformation. *Journal of Vehicle Safety Engineering*. 2017;21(1):45-53.
12. Lee C, Jang S, Lee S. Development of a vehicle crash simulation model for evaluation of safety features. *Journal of Automotive Safety*. 2019;44(2):101-112.
13. Wang X, Liu W, Zhang F. Advanced vehicle crash modeling and simulation: A review. *Automotive Safety and Engineering Journal*. 2020;34(3):210-220.
14. Brown L, Naylor P, Patel A. The role of simulation models in the development of automotive safety features. *International Journal of Safety and Crashworthiness*. 2018;50(4):123-134.
15. Johnson R, Liu T, Zhang Y. Vehicle crash simulations with advanced safety features: A comprehensive review. *Journal of Engineering and Safety Technology*. 2020;18(5):245-258.
16. Miller S, Turner R, Lee A. Evaluation of vehicle crashworthiness using advanced simulation tools. *Journal of Structural Safety*. 2017;15(6):56-65.
17. Zhang H, Wu Y, Liu J. Simulation-based vehicle safety assessment using multi-impact crash testing models. *Journal of Automotive Safety Technology*. 2021;45(3):117-128.
18. Liu Z, Xie B, Liu D. Advanced computational methods for vehicle crashworthiness and safety testing. *Computational Mechanics and Safety Design*. 2019;12(2):142-153.
19. Wang D, Lu Z, Zhang Y. Impact of safety system integration in vehicle design: A computational study. *Journal of Vehicle Design and Safety*. 2020;29(1):77-89.