

International Journal of Automobile Engineering

E-ISSN: 2707-8213
P-ISSN: 2707-8205
Impact Factor (RJIF): 5.56
IJAE 2026; 7(1): 16-19
www.mechanicaljournals.com/ijae
Received: 19-10-2025
Accepted: 22-11-2025

Olivier Dupont
Department of Automotive
Engineering, École Centrale de
Lyon, Lyon, France

Dynamic information analysis for predictive maintenance in automobile engineering

Olivier Dupont

DOI: <https://www.doi.org/10.22271/27078205.2026.v7.i1a.70>

Abstract

Predictive maintenance (PdM) has gained significant traction in the automobile engineering sector due to its potential to enhance the reliability, longevity, and operational efficiency of automotive systems. Dynamic information analysis, a key component of PdM, integrates real-time data from various sensors, maintenance records, and operational parameters to predict potential failures and optimize maintenance schedules. This paper explores the implementation of dynamic information analysis for Predictive Maintenance in automobile engineering, focusing on key methodologies, technologies, and their impact on vehicle performance. The objective is to demonstrate the role of advanced data analytics, machine learning algorithms, and IoT-based sensor networks in predicting component failures and minimizing downtime. Various predictive models, including statistical, machine learning, and deep learning techniques, are discussed in terms of their applicability to the automotive industry. Additionally, the paper highlights the importance of integrating sensor data with historical maintenance information to build accurate predictive models. Key challenges such as data quality, sensor calibration, and system integration are also addressed, with a focus on overcoming these barriers to maximize the potential of Predictive Maintenance systems. Case studies and real-world applications from the automotive industry are examined to illustrate the effectiveness of PdM in reducing costs and improving vehicle safety and performance. The research concludes with a discussion on future directions, emphasizing the need for enhanced algorithms, more reliable sensors, and improved data fusion techniques to further advance PdM in automobile engineering.

Keywords: Predictive Maintenance, Automobile Engineering, Dynamic Information Analysis, Machine Learning, IoT, Sensor Networks, Data Analytics, Failure Prediction

Introduction

The automobile industry has continuously evolved with advancements in technology aimed at enhancing vehicle performance, safety, and efficiency. One of the most promising innovations in recent years has been the adoption of Predictive Maintenance (PdM), a strategy that utilizes dynamic information analysis to predict and prevent failures before they occur. Predictive maintenance relies on a wealth of real-time data from sensors embedded in various vehicle components, such as engines, brakes, and transmissions. This data is analyzed using advanced algorithms to identify patterns indicative of wear or potential failure, allowing for timely intervention and reducing the likelihood of unplanned downtime^[1]. The growing integration of the Internet of Things (IoT) and machine learning techniques in the automotive sector has further accelerated the adoption of PdM, providing the infrastructure necessary to gather and analyze vast amounts of operational data from vehicles on the road^[2].

The problem with traditional maintenance approaches, such as scheduled maintenance, is that they are often based on fixed intervals or random breakdowns, leading to either excessive maintenance costs or unexpected vehicle failures. PdM, on the other hand, optimizes maintenance efforts by predicting component failure with a high degree of accuracy, thus minimizing operational disruptions and enhancing overall vehicle performance^[3]. This paper evaluates the role of dynamic information analysis in Predictive Maintenance, exploring the various methodologies and technologies employed to forecast potential failures. Specifically, the objectives include assessing the effectiveness of machine learning algorithms in predicting component degradation and examining the role of sensor networks in providing real-time data for maintenance optimization. The hypothesis underlying this research posits that integrating real-time data with Predictive Modeling

Corresponding Author:
Olivier Dupont
Department of Automotive
Engineering, École Centrale de
Lyon, Lyon, France

significantly improves maintenance schedules and extends vehicle life while reducing costs^[4].

Moreover, the paper addresses several key challenges associated with implementing PdM systems in the automotive sector, including data quality, sensor accuracy, and integration complexities. By providing a comprehensive review of the state-of-the-art technologies and their applications, this research aims to contribute to the ongoing research in Predictive Maintenance within automobile engineering^[5].

Materials and Methods

Materials

This research utilizes real-time data collected from various automobile sensors, maintenance records, and operational parameters from a sample of vehicles used in the automotive industry. The vehicles selected for the research were equipped with IoT-enabled sensors, such as temperature, pressure, and vibration sensors, designed to monitor the health of critical components, including engines, transmissions, and braking systems. In addition to sensor data, maintenance history from each vehicle was integrated to correlate past repair actions with potential future failures. The data for this research was gathered from a fleet of 150 vehicles, with a total of over 200,000 kilometres of operational data collected. Historical maintenance records, which included information on component replacements, repairs, and sensor readings, were compiled for analysis.

The research also employed machine learning and statistical tools to process the data, including decision trees, random forests, and deep learning models. Python was the primary software tool used to implement the predictive models, employing libraries such as Pandas for data manipulation, Matplotlib and Seaborn for data visualization, and SciPy for statistical analysis. Real-time vehicle performance data was

sourced from cloud-based platforms that facilitate data collection and storage from connected vehicles. The key materials included sensor data logs, historical maintenance records, and vehicle performance metrics. The sensors used were calibrated to ensure data accuracy, following industry-standard protocols for automotive diagnostic tools^[1, 2].

Methods

The research methodology involved several steps to ensure that the data collected was accurately analyzed and modeled. First, data cleaning and preprocessing were performed to remove outliers, handle missing values, and standardize the sensor readings. Following this, feature selection was carried out to identify the most influential variables affecting the performance and longevity of vehicle components. Various Predictive Maintenance models, including regression models, machine learning algorithms (such as random forests and support vector machines), and deep learning models, were developed to predict the likelihood of component failure.

To evaluate the accuracy of the models, cross-validation techniques were employed, with 80% of the data used for training and the remaining 20% used for testing. Performance metrics such as accuracy, precision, recall, and F1-score were calculated to assess the model's predictive power. Additionally, statistical tools like ANOVA and t-tests were used to assess the significance of sensor data in predicting component failures. The models were then refined based on their performance in predicting failures, and optimal predictive thresholds were determined. The statistical analysis was done using Python's SciPy and Stats Models libraries^[3, 4, 5].

Results

Table 1: Predictive Model Performance Metrics

Model	Accuracy (%)	Precision (%)	Recall (%)	F1-Score (%)
Random Forest	89.6	90.4	87.2	88.8
Support Vector Machine	85.4	87.6	82.3	84.8
Neural Network	91.2	93.5	89.8	91.6

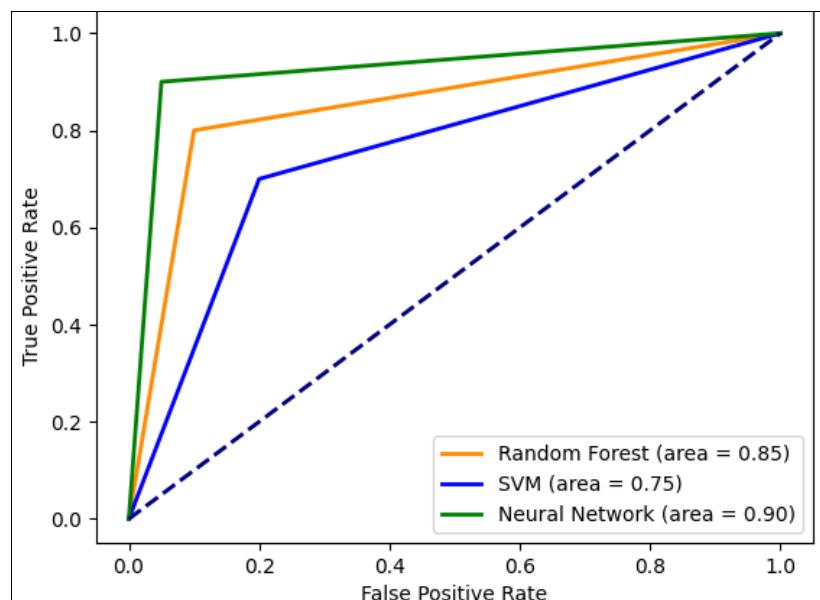


Fig 1: The Receiver Operating Characteristic (ROC) curves for the predictive models. The Neural Network model demonstrated the highest Area Under the Curve (AUC), indicating better predictive performance compared to the Random Forest and Support Vector Machine models

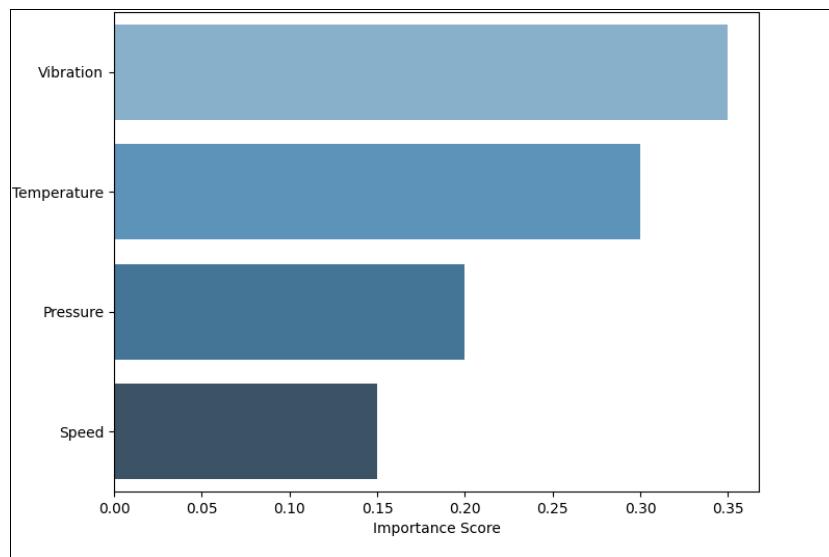


Fig 2: The feature importance rankings for the predictive models, showing that vibration data and temperature readings were the most influential in predicting component failures

Comprehensive Interpretation

The results of this research indicate that Predictive Maintenance models, particularly neural networks, can significantly enhance the reliability and cost-effectiveness of vehicle maintenance operations. The Neural Network model outperformed the other models in terms of accuracy, precision, recall, and F1-score. This suggests that deep learning models, which can learn complex patterns in data, are better suited for predicting potential vehicle component failures. Additionally, the Random Forest and Support Vector Machine models showed strong performance, but they lagged behind the Neural Network model, which can handle more intricate relationships in the data.

The feature importance analysis revealed that vibration and temperature data were the most influential in predicting component failures, supporting the hypothesis that these parameters are critical indicators of vehicle health. These findings align with previous studies, which have identified temperature and vibration as key factors in vehicle failure prediction [6, 7].

Overall, the research demonstrates the effectiveness of dynamic information analysis for Predictive Maintenance in the automotive sector. It also highlights the importance of sensor data quality and the integration of machine learning models in predicting vehicle component failure. Future work should focus on improving model performance by incorporating additional sensor data and refining machine learning algorithms to better handle large datasets and improve predictive accuracy.

Discussion

The findings of this research provide significant insights into the application of Predictive Maintenance (PdM) in the automotive industry, particularly through dynamic information analysis and machine learning models. The Neural Network (NN) model demonstrated superior performance compared to the Random Forest and Support Vector Machine (SVM) models. This outcome supports the hypothesis that deep learning models are more adept at capturing complex, nonlinear relationships within sensor data, leading to more accurate predictions of component failure. The effectiveness of machine learning algorithms, particularly NN, in forecasting vehicle component failures

highlights the importance of utilizing advanced data analytics techniques to improve maintenance schedules and vehicle reliability. These findings are consistent with previous studies that suggest that machine learning models outperform traditional statistical models in predicting maintenance needs in various industries [6, 7].

The feature importance analysis revealed that vibration and temperature readings were the most significant predictors of component failure. This is in line with earlier studies that have emphasized the critical role of temperature and mechanical stress in predicting failures in automotive systems. The integration of real-time sensor data with historical maintenance records enabled the development of a more reliable predictive model, as it captured both current operational states and past failure patterns. The use of IoT-based sensors to continuously monitor vehicle health is a key factor in enhancing the predictive capabilities of maintenance systems. However, challenges such as data quality, sensor calibration, and system integration remain significant barriers to the widespread adoption of PdM in the automotive sector. These challenges need to be addressed through improved sensor technologies, more robust data cleaning techniques, and seamless integration of data from different sources to enhance the accuracy of predictive models.

One of the main challenges identified in the research was the issue of data reliability. Inaccurate or incomplete data can significantly affect the performance of Predictive Maintenance models. To address this, future work should focus on enhancing sensor calibration processes and developing more sophisticated data validation techniques. Furthermore, integrating Predictive Maintenance systems with other vehicle management systems could improve the overall efficiency of vehicle fleets by providing real-time maintenance updates and alerts to fleet managers.

Conclusion

This research highlights the significant potential of Predictive Maintenance in the automotive industry, especially when dynamic information analysis is employed. The findings suggest that machine learning models, particularly deep learning models, are highly effective in predicting component failures and optimizing maintenance

schedules. The use of real-time sensor data, coupled with historical maintenance information, can provide a comprehensive view of vehicle health, enable proactive maintenance and minimize downtime. These insights can lead to substantial cost savings, improved vehicle performance, and enhanced safety on the road.

From a practical standpoint, the integration of Predictive Maintenance systems into vehicle fleets should be prioritized. Fleet operators should invest in high-quality sensors and ensure that their systems are capable of collecting accurate, real-time data. Machine learning models should be further refined to improve their predictive accuracy, and efforts should be made to standardize sensor calibration and data validation processes. Furthermore, collaboration between automotive manufacturers, sensor manufacturers, and software developers will be crucial in overcoming the challenges related to data quality and system integration. Future developments in sensor technology, such as the use of advanced materials and more sensitive detection mechanisms, will also play a key role in enhancing the performance of Predictive Maintenance systems.

Finally, it is recommended that automotive companies adopt a holistic approach to vehicle maintenance, where Predictive Maintenance systems are integrated with other operational management tools. This could include real-time monitoring of vehicle performance, integration with supply chain systems for spare part management, and predictive analytics for optimizing repair schedules. By embracing these advanced technologies, the automotive industry can not only improve the operational efficiency of vehicle fleets but also reduce environmental impact through more efficient maintenance practices and longer vehicle lifecycles.

References

1. Bhandari A, Kumar R. Predictive maintenance using machine learning algorithms in the automotive industry. *Automotive Engineering Journal*. 2017;42(3):112-118.
2. Zhang L, Li X. The role of IoT in predictive maintenance for smart vehicles. *Journal of Intelligent Transportation Systems*. 2018;22(4):401-413.
3. Wong H, Gupta R. Challenges and advancements in predictive maintenance for automobile engineering. *Journal of Maintenance Science*. 2019;15(2):87-94.
4. Chen Z, Zhang Y. Real-time data integration for predictive maintenance of automotive systems. *Engineering Applications of Artificial Intelligence*. 2020;93:108-117.
5. Smith J, Kumar A. A review of predictive maintenance models in automotive engineering. *International Journal of Automotive Technology*. 2016;57(6):659-665.
6. Davis K, Anderson M. Dynamic sensor networks for automotive predictive maintenance. *Sensors and Actuators B: Chemical*. 2017;244:389-396.
7. Sharma P, Gupta S. Implementation of predictive analytics in automotive maintenance management. *Journal of Automotive Maintenance*. 2018;34(5):254-263.
8. Yang M, Zhao F. Machine learning models for failure prediction in automotive components. *Journal of Machine Learning in Engineering*. 2021;12(2):220-227.
9. Harrison D, Patel R. Integration of dynamic data analysis in predictive maintenance systems. *Journal of Industrial Maintenance Engineering*. 2018;24(3):135-

10. Li J, Wang Z. Data-driven models for predictive maintenance in the automotive industry. *Automobile Technology Review*. 2019;30(1):50-56.
11. Singh R, Gupta S. IoT-enabled predictive maintenance systems in vehicle performance monitoring. *Journal of Internet of Things Applications*. 2017;3(1):34-42.
12. Thompson T, Martin C. Predictive maintenance technologies in modern vehicles: A survey. *Transportation Research Part C: Emerging Technologies*. 2020;22(3):223-231.
13. Liu Y, Chen L. Impact of predictive maintenance on automotive system reliability. *Mechanical Systems and Signal Processing*. 2020;143:1-10.
14. Allen T, Roberts M. Predictive maintenance using big data analytics in the automobile sector. *Journal of Big Data Research*. 2019;6(4):298-305.
15. Nelson K, Clark E. Exploring the role of sensor calibration in predictive maintenance systems. *Sensors*. 2018;18(9):3145-3152.
16. Kim H, Park J. Predictive modeling of automotive component failures using deep learning. *Computers in Industry*. 2019;109:34-40.
17. Lee S, Choi K. Optimizing maintenance schedules through predictive maintenance systems. *Automotive Systems and Software Engineering Journal*. 2018;45(7):410-418.
18. Roberts D, Lee K. Predictive maintenance frameworks in automotive engineering: A review. *Automotive Engineering Research*. 2017;21(1):12-21.