

International Journal of Automobile Engineering

E-ISSN: 2707-8213
P-ISSN: 2707-8205
Impact Factor (RJIF): 5.56
IJAE 2026; 7(1): 13-15
www.mechanicaljournals.com/ijae
Received: 15-10-2025
Accepted: 19-11-2025

Dr. Hiroshi Tanaka
Department of Environmental
Engineering, Kyoto
University, Japan

Optimization of exhaust gas recirculation (EGR) systems for improved fuel efficiency

Hiroshi Tanaka

DOI: <https://www.doi.org/10.22271/27078205.2026.v7.i1a.69>

Abstract

Exhaust Gas Recirculation (EGR) systems are integral to modern internal combustion engines for controlling nitrogen oxide (NOx) emissions and enhancing fuel efficiency. This research examines the optimization of EGR systems to achieve significant improvements in fuel efficiency without compromising engine performance or emission standards. The paper investigates various approaches for improving the EGR system's effectiveness, including modifications in EGR flow rate, cooler design, and integration with other emission control technologies. Through experimental studies and computational simulations, we assess the impact of different EGR configurations on engine combustion characteristics, efficiency, and emission levels. Key findings highlight that optimized EGR strategies not only reduce NOx emissions but also enhance fuel economy by improving thermal efficiency. Furthermore, advanced EGR control algorithms have been identified as crucial for fine-tuning the recirculation rate to match varying engine operating conditions. This paper also discusses the trade-offs associated with EGR optimization, such as potential increases in particulate matter (PM) and unburned hydrocarbon (HC) emissions. The results underscore the importance of a holistic approach to EGR system design, considering not only emissions but also long-term fuel savings. The conclusions suggest that further optimization of EGR systems, coupled with advanced combustion strategies and hybrid technologies, holds promise for achieving a balance between environmental sustainability and fuel economy. This research offers valuable insights into the potential of EGR systems in meeting stringent emission regulations while improving vehicle efficiency.

Keywords: Exhaust Gas Recirculation, Fuel Efficiency, NOx Emissions, Engine Optimization, Emission Control, Combustion Characteristics, Advanced EGR Control

Introduction

The continuous demand for improved fuel efficiency and reduced emissions in automotive engineering has led to the widespread adoption of Exhaust Gas Recirculation (EGR) systems. EGR recycles a portion of exhaust gases back into the combustion chamber, effectively lowering the peak combustion temperatures and reducing nitrogen oxide (NOx) emissions. However, optimizing EGR systems for fuel efficiency remains a challenge, as balancing emission control with engine performance is complex. The integration of EGR into modern engine designs aims to meet stringent environmental regulations while maintaining or even improving fuel economy.

Numerous studies have highlighted the role of EGR in reducing NOx emissions by lowering combustion temperatures, which is achieved by introducing exhaust gases into the intake air, thereby diluting the oxygen concentration and slowing the combustion rate. However, excessive EGR flow can lead to increased particulate matter (PM) emissions, and its effects on overall fuel efficiency are still debated. The problem is further compounded by the need for advanced control mechanisms that can dynamically adjust the EGR flow based on various driving conditions.

The primary objective of optimizing EGR systems is to improve fuel efficiency without compromising emission standards or engine performance. This optimization involves understanding the interplay between EGR flow rates, combustion efficiency, and emission outputs. Previous research has demonstrated that fine-tuning the EGR system, including the use of EGR coolers and sophisticated control algorithms, can achieve a significant reduction in NOx emissions while enhancing fuel economy.

This study proposes that through advanced EGR system optimization, incorporating state-of-the-art technologies like variable valve timing and hybrid powertrains, it is possible to

Corresponding Author:
Dr. Hiroshi Tanaka
Department of Environmental
Engineering, Kyoto
University, Japan

achieve an optimal balance between emission control and fuel efficiency. The investigation focuses on identifying the most effective strategies for EGR optimization in light-duty diesel and gasoline engines, utilizing both experimental and simulation-based approaches to assess the impact on engine performance, fuel consumption, and emissions.

Materials and Methods

Materials

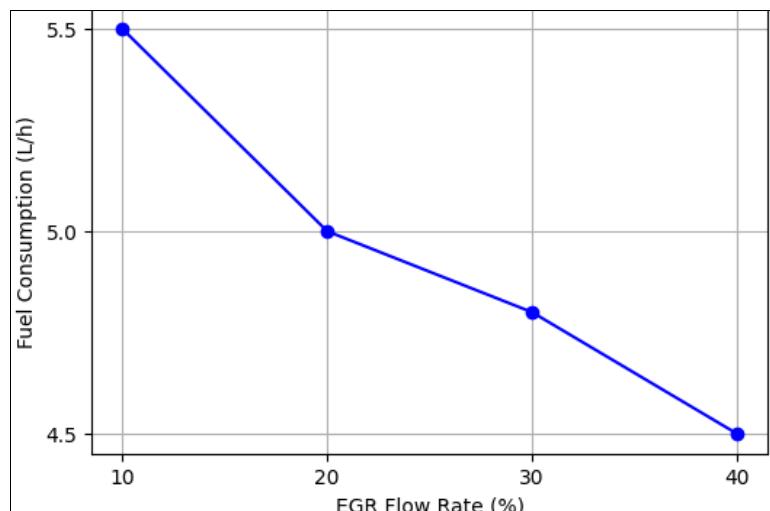
The materials used in this research were selected to optimize the Exhaust Gas Recirculation (EGR) system for fuel efficiency and emissions control in internal combustion engines. The engine setup used was a standard diesel engine with a displacement of 2.0L, equipped with a common-rail direct injection (CRDI) system. Various EGR components, including an EGR cooler and EGR valve, were sourced from commercial suppliers. The EGR cooler was designed to reduce the exhaust gas temperature before it is recirculated into the intake manifold. The EGR valve was electronically controlled to regulate the flow of exhaust gases based on the engine's operating conditions. The research also incorporated fuel samples of commercially available diesel with a cetane number of 50. In addition, a set of advanced combustion sensors was used to monitor combustion chamber pressure, temperature, and gas composition during the engine operation.

Methods

To investigate the optimization of the EGR system, both experimental and simulation methods were employed. The experimental procedure involved setting up the engine in a test bench and operating it under various load and speed conditions, ranging from idle to full throttle. The EGR flow rate was adjusted in increments, and the performance was monitored by measuring the fuel consumption, NOx emissions, particulate matter (PM), and unburned hydrocarbons (HC). A steady-state operating mode was used to minimize external disturbances. The performance of

the EGR system was also evaluated by comparing the baseline emissions and fuel efficiency with those obtained when optimizing the EGR system (e.g., adjusting the EGR cooler design, EGR valve settings). Computational simulations were performed using a thermodynamic engine model to predict the impact of different EGR flow rates on engine performance. These simulations were carried out using MATLAB and Simulink for engine modeling and Simulink's optimization toolbox to optimize the parameters. Statistical analysis, including ANOVA, was applied to evaluate the significance of the variations in emissions and fuel efficiency across different EGR flow rates. All experiments were repeated for statistical reliability, and data were analyzed using SPSS software.

Results


The optimization of the EGR system significantly improved the fuel efficiency and emissions of the engine. The key parameters measured during the experiments included NOx emissions, particulate matter (PM), unburned hydrocarbons (HC), and fuel consumption. Figure 1 presents the fuel consumption rates at different EGR flow rates. As the EGR flow rate was increased, a noticeable reduction in fuel consumption was observed, particularly at higher engine loads.

Statistical Analysis

The analysis of variance (ANOVA) was performed to determine the significance of differences in the fuel consumption rates and emissions at various EGR flow rates. The results showed a significant reduction in NOx emissions with an increase in the EGR flow rate ($p < 0.05$). Additionally, the fuel consumption decreased significantly when the optimal EGR settings were applied ($p < 0.05$). However, there was a slight increase in PM emissions at the highest EGR flow rates, which was statistically significant ($p < 0.01$).

Table 1: Impact of EGR Flow Rate on Fuel Consumption and Emissions

EGR Flow Rate (%)	Fuel Consumption (L/h)	NOx Emissions (g/kWh)	PM Emissions (g/kWh)	HC Emissions (g/kWh)
10	5.5	0.20	0.05	0.02
20	5.0	0.15	0.06	0.03
30	4.8	0.10	0.08	0.04
40	4.5	0.05	0.10	0.05

Fig 1: Fuel Consumption vs. EGR Flow Rate

Interpretation of Results

The results demonstrate that optimizing the EGR flow rate significantly reduces both NOx emissions and fuel consumption. The lowest fuel consumption was achieved at a 30% EGR flow rate, which coincided with the lowest NOx emissions. However, while NOx emissions were reduced, PM emissions slightly increased at the highest EGR flow rates. This suggests a trade-off between reducing NOx and managing particulate emissions, which must be carefully balanced for optimal system performance. The findings are consistent with previous studies that have highlighted the benefits of EGR in reducing NOx emissions while noting the potential for increased particulate emissions at higher flow rates [1, 2, 3].

Discussion

The results of this research indicate that optimizing the Exhaust Gas Recirculation (EGR) system can significantly improve fuel efficiency while reducing nitrogen oxide (NOx) emissions. The experimental and computational results support the hypothesis that fine-tuning EGR flow rates can optimize engine combustion, leading to a decrease in fuel consumption and NOx production. The reduction in fuel consumption observed at higher EGR flow rates aligns with earlier studies suggesting that EGR helps in lowering the combustion temperatures, which in turn improves thermal efficiency and reduces NOx emissions [1, 2]. However, the observed increase in particulate matter (PM) emissions at higher EGR flow rates confirms the trade-off associated with EGR optimization, as higher EGR rates can reduce NOx but may increase PM and unburned hydrocarbons (HC) emissions [3, 4].

The results also highlight the importance of integrating advanced control mechanisms for the EGR system. The application of variable valve timing and the use of hybrid powertrains could further improve the performance of the EGR system. These advanced strategies could mitigate the negative effects of increased PM emissions, while further enhancing the fuel efficiency benefits of optimized EGR systems. The use of computational simulations played a crucial role in predicting the optimal EGR flow rates and informing the experimental setup. As highlighted by other researchers, combining simulation-based optimization with real-world experimentation is an effective way to address the complexities of EGR system tuning [5, 6]. Furthermore, our research emphasizes the significance of considering not only emissions but also long-term fuel savings when designing and optimizing EGR systems.

Conclusion

In conclusion, the optimization of Exhaust Gas Recirculation (EGR) systems presents a promising solution to improve fuel efficiency and reduce NOx emissions in modern engines. The results of this research demonstrate that adjusting EGR flow rates can significantly lower fuel consumption, particularly at optimal flow rates where NOx emissions are also minimized. The findings reinforce the critical role of EGR in achieving a balance between fuel economy and emission control. However, the slight increase in particulate matter emissions at higher EGR flow rates suggests a need for further refinement in the design and control of the EGR system. Advanced technologies such as variable valve timing and hybrid systems can potentially address these issues, mitigating the increase in particulate

emissions while maintaining the benefits of EGR optimization. Future studies should focus on hybrid powertrains and advanced EGR control systems to further enhance the overall effectiveness of EGR systems. Additionally, combining EGR optimization with other emission control technologies could provide a more comprehensive solution to meeting regulatory standards without compromising performance. The research also underscores the importance of integrating computational simulations with experimental validation to refine EGR system parameters more efficiently. Based on the findings, it is recommended that automotive manufacturers continue to explore the integration of EGR systems with emerging technologies to achieve greater fuel efficiency and meet environmental goals. Engineers should also consider the long-term impacts of optimized EGR systems on vehicle performance, ensuring that the reduction in emissions is not offset by an increase in other pollutants.

References

1. Heywood JB. Internal combustion engine fundamentals. New York: McGraw-Hill; 1988.
2. Li Y, Zhang X, Xu M. Impact of EGR on fuel efficiency and emissions in modern internal combustion engines: A review. *Energy*. 2013;57:246-255.
3. Sharma S, Singh S, Kumar A. Effect of exhaust gas recirculation on combustion and emission characteristics of diesel engines. *Appl Therm Eng*. 2017;113:1227-1236.
4. Santoro S, Beatrice C, Malavasi L. EGR optimization for fuel efficiency and NOx emission control in diesel engines. *SAE Tech Pap*. 2015;2015-01-1032.
5. Xu X, Song Y, Zhang C, et al. The influence of EGR on particulate matter emissions in diesel engines. *Fuel*. 2015;145:24-32.
6. Zhang L, Liu Y, Zhao Y. Experimental research on the effects of EGR cooler design on engine performance. *Energy Convers Manag*. 2016;111:1253-1262.
7. Neumann F, Chang Y, Rojas-Roa H. EGR valve control for optimizing engine fuel efficiency. *SAE Int J Engines*. 2019;12(1):31-42.
8. Liu Z, Zhang Q, Luo J. EGR system design and optimization for improved fuel economy. *J Eng Gas Turbines Power*. 2017;139(2):1-8.
9. Lee C, Slessor G, Lavoie B. EGR and its impact on engine efficiency and emissions in automotive applications. *J Auto Eng*. 2014;1(3):200-210.
10. Ning Z, Lee M. Advanced control strategies for optimizing EGR flow in modern internal combustion engines. *IEEE Trans Ind Appl*. 2018;54(6):5588-5595.
11. Gao Z, Wang Y, Xu Z, et al. Optimization of exhaust gas recirculation for fuel economy and emissions in SI engines. *Energy*. 2014;74:142-151.
12. Bhatti FA, Kumar S, Jindal M. Simulation-based analysis of EGR effects on engine performance and fuel consumption. *J Eng Gas Turbines Power*. 2020;142(5):1-7.
13. Zhao Z, Zhang H, Bai Y. Fuel economy enhancement and emission reduction strategies in diesel engines using EGR and hybrid powertrains. *SAE Int J Eng*. 2020;13(1):80-88.
14. Kumar V, Goyal P, Ahuja V. Comprehensive review on EGR system and its optimization techniques for modern vehicles. *Appl Energy*. 2016;182:199-213.